Abstract:
The present invention provides a thin magnetoelectric transducer which has a projected size substantially equal to that of a pellet and which can be subjected to an inspection test nondestructively. The magnetoelectric transducer has a semiconductor device provided on the upper surface of a projecting portion of a projecting nonmagnetic insulating substrate 9 and comprising a magnetosensitive section 3 and inner electrodes 2 made of metal. A conductive resin layer 4 is formed on the internal electrodes 2 and on part of the side surfaces of the projecting portion. A strain buffering layer 5 is formed at least on the magnetosensitive section 3. Furthermore, at least the strain buffering layer 5 on the magnetosensitive section 3 is coated with a protective layer 6.
Abstract:
A ferrite magnetic film structure exhibiting a magnetic anisotropy, the ferrite magnetic film structure comprising, a substrate provided on one main surface thereof with a groove-like recessed portion and with a ridge-like projected portion located neighboring to the groove-like recessed portion, and a ferrite magnetic film constituted by a continuous film having a substantially flat upper surface and formed on one main surface of the substrate, wherein the ferrite magnetic film structure meets the following conditions: (a/(a+b))(h/(t−h))≧0.047 1≧(a+b) where “a” is a width of the ridge-like projected portion, b is a width of the groove-like recessed portion, h is a height of step between the groove-like recessed portion and the ridge-like projected portion, t is a thickness of the ferrite magnetic film at the recessed portion, and 1 is a length of the recessed portion and of the projected portion.
Abstract:
A magnetic control device including an antiferromagnetic layer, a magnetic layer placed in contact with one side of the antiferromagnetic layer, and an electrode placed in contact with another side of the antiferromagnetic layer, wherein the direction of the magnetization of the magnetic layer is controlled by voltage applied between the magnetic layer and the electrode. In particular, when an additional magnetic layer is further laminated on the magnetic layer placed in contact with the antiferromagnetic layer via a non-magnetic layer, the direction of the magnetization of the controlled magnetic layer can be detected as a change in the electric resistance. Since such a magnetic control device, in principle, responds to the electric field or magnetic field, it forms a magnetic component capable of detecting an electric signal or a magnetic signal. In this case, the direction of the magnetization basically is maintained until the next signal is detected, so that such a device also can form an apparatus. Thus, a magnetic control device capable of controlling the magnetization with voltage and magnetic component and a memory apparatus using the same are provided.
Abstract:
A magnetoresistive element, comprising a crystal structure with a grain boundary formed at a misorientation angle, and a method of producing a crystal structure having colossal magnetoresistance, wherein a grain boundary is formed at a misorientation angle. The crystal structure comprises a substrate layer and a CMR film layer epitaxially grown thereon, the CMR film layer having a plurality of first sections and a plurality of second sections with intermediate grain boundaries, the crystallographic axis of the first sections being different from the crystallographic axis of the second sections. The method comprises forming, on a base crystal material, a template comprising a first set of sections and a second set of sections with intermediate boundaries, the crystallographic axis of the first set being different from the crystallographic axis of the second set, and growing a film epitaxially on the base crystal material to form a plurality of grain boundaries over the boundaries between the first set and the second set.
Abstract:
Tunnel effect magnetoresistance comprising, in the form of a stack: a first layer (12) of free magnetisation magnetic material, a “barrier” layer (16), composed of an electrically insulating material, and a second layer (14) of trapped magnetisation magnetic material, According to the invention, the thickness of the first layer (12) of magnetic material is less than 10 nm. The invention may be particularly applied to the manufacture of magnetic data read heads.
Abstract:
In one embodiment, a semiconductor device having single or multi-layer intermediate layers that easily adhere to a glass frit and lead lines of respective interconnections is disclosed. In general, the single or multi-layer intermediate layers are formed on at least the top surfaces of portions of the respective lead lines on which the glass frit is placed.
Abstract:
A magneto-resistive device includes first and second ferromagnetic layers having different coercivities, and a spacer layer between the first and second layers. Each ferromagnetic layer has a magnetization that can be oriented in either of two directions.
Abstract:
A transpinnor switch is described having a network of thin-film elements in a bridge configuration, selected ones of the thin-film elements exhibiting giant magnetoresistance. The switch also includes at least one input conductor inductively coupled to a first subset of the selected thin-film elements, and a switch conductor inductively coupled to a second subset of the selected thin-film elements for applying magnetic fields thereto. The switch is configurable using the switch conductor to generate an output signal representative of an input signal on the input conductor. The switch is also configurable using the switch conductor to generate substantially no output signal regardless of whether the input signal is present. The transpinnor switch described herein may be used in a wide variety of applications including, for example, a field programmable gate array.
Abstract:
A magnetoresistive device including a high-resistivity layer (13), a first magnetic layer (12) and a second magnetic layer (14), the first magnetic layer (12) and the second magnetic layer (14) being arranged so as to sandwich the high-resistivity layer (13), wherein the high-resistivity layer (13) is a barrier for passing tunneling electrons between the first magnetic layer (12) and the second magnetic layer (14), and contains at least one element LONC selected from oxygen, nitrogen and carbon; at least one layer A selected from the first magnetic layer (12) and the second magnetic layer (14) contains at least one metal element M selected from Fe, Ni and Co, and an element RCP different from the metal element M; and the element RCP combines with the element LONC more easily in terms of energy than the metal element M. Accordingly, a novel magnetoresistive device having a low junction resistance and a high MR can be obtained.
Abstract:
A first and a second Hall element (2 and 3) for current detection, in addition to a semiconductor element (4) for an electric circuit, are provided on a semiconductor substrate. A conductor layer (5), through which flows the current of the semiconductor element (4), is formed on an insulating film (20) on the surface of the semiconductor substrate. The conductor layer (5) is arranged along the first and second Hall elements (2 and 3) for higher sensitivity. The magnetic flux created by the flow of a current through the conductor layer (5) is applied to the first and second Hall elements (2 and 3). The first and second Hall voltages obtained from the first and second Hall elements (2 and 3) are totaled for higher sensitivity.