Abstract:
A charged particle apparatus, with multiple electrically conducting semispheric grid electrodes, the grid electrodes mounted in a dielectric mounting ring, with hidden areas or regions to maintain electrical isolation between the grid electrodes as sputter deposits form on the grid electrodes and mounting ring. The grid electrodes are mounted to the mounting ring with slots and fastening pins that allow sliding thermal expansion and contraction between the grid electrodes and mounting ring while substantially maintaining alignment of grid openings and spacing between the grid electrodes. Asymmetric fastening pins facilitate the sliding thermal expansion while restraining the grid electrodes. Electrical contactors supply and maintain electrical potentials of the grid electrodes with spring loaded sliding contacts, without substantially affecting the thermal characteristics of the grid electrodes.
Abstract:
An arc tube is formed by polycrystalline alumina so that an average crystal grain diameter of a surface is two to ten times as large as an average crystal grain diameter of an inside including a center line of a thickness and the average crystal grain diameter on the center portion of the thickness is 10 &mgr;m to 100 &mgr;m. As a result, in the arc tube, the total transmittance is 98%, and a linear ray transmittance is 5%.
Abstract:
A triode carbon nanotube field emission display (FED) using a barrier rib structure and a manufacturing method thereof are provided. In a triode carbon nanotube FED employing barrier ribs, barrier ribs are formed on cathode lines by a screen printing method, a mesh structure is mounted on the barrier ribs, and a spacer is inserted between the barrier ribs through slots of the mesh structure, thereby stably fixing the mesh structure and the spacer within a FED panel due to support by the barrier ribs.
Abstract:
The present invention may be used in the production of highly efficient films for electron field emitters. The cold-emission cathode of the present invention comprises a substrate having a carbon film with an irregular structure applied thereon. This structure comprises carbon micro- and nano-ridges and/or micro- and nano-threads which are perpendicular to the surface of the substrate, which have a typical size of between 0.005 and 1 micron as well as a distribution density of between 0.1 and 100 &mgr;m−2, and which are coated with a diamond nano-film whose thickness represents a fraction of a micron. The method for producing the cathode involves sequentially depositing two carbon films. A carbon film with nano-barbs is first deposited on a substrate arranged on an anode by igniting a direct-current discharge at a density of between 0.15 and 0.5 A. This deposition is carried out in a mixture containing hydrogen and a carbon-containing additive, under a global pressure of between 50 and 300 torrs, using vapors of ethylic alcohol at a 5 to 15% concentration or vapors of methane at a 6 to 30% concentration, and at a temperature on the substrate of between 600 and 1100° C. A diamond nano-film is then deposited on the graphite film thus grown.
Abstract:
A discharge device of the invention includes multiple bonded ceramic layers with electrodes formed between the layers. It can be combined with the various MCIC technologies to produce myriad useful devices. Contacts are made to the electrodes, which may be grouped in different arrangements. The electrodes contact a hole through some or all of the ceramic layers to define a discharge cavity. Different groupings of the electrodes will produce different types of discharge. Alternating the electrodes in interdigitated pairs permits an arbitrary extension of the discharge cavity length. Having consecutive anodes or cathodes permits formation of regions where electrons may cool. Another device of the invention includes a multilayer ceramic structure having a hole formed in a least one outer layer through an electrode on the outer side of the layer and in contact with an electrode between two layers. A contact is formed to the electrode between layers through any remaining layers in the multilayer ceramic structure.
Abstract:
A diamond field emitter and a fabrication method thereof, in which a pretreatment is performed on a surface of an Si substrate in order that diamond nuclei are uniformly formed on the Si substrate during a diamond deposition, an oxide film such as an SiO2 film is deposited on the pretreated surface of the Si substrate and removed after an etching process so that diamond powder can be selectively remained during the etching process, thus the effect of the surface pretreatment of the Si substrate remains in the selected portion during the etching process, and it is also possible to uniformly deposit the diamond in said portion. According to the present invention, the diamond field emitter having excellent and uniform field emission characteristic can be manufactured because the field emission is easily achieved at a tip shaped field emission section, and, moreover, the diamond placed on an upper end portion of the tip increases electron emission effect.
Abstract:
There are provided a decomposition apparatus by emission of a UV light which is irradiated from an excimer lamp, a decomposition method thereof and an excimer lamp and an excimer emission apparatus which may suitable be used for a decomposition apparatus and a decomposition method of an organic compound. The decomposition apparatus comprises an excimer lamp emitting UV light for decomposing the organic compound and a decomposition container provided with the excimer lamp for decomposing the organic compound in a liquid or a gas. In the decomposition apparatus, since the UV light irradiated from excimer lamp is emitted to the liquid or the gas, the organic compound in the liquid or the gas can be decomposed easily by the simple decomposition apparatus and method. The decomposition apparatus and method are effective to decompose the organic compound, such as dioxin (polychlorinated dibenzo-para-dioxin), PCB (polychlorinated biphenyl), trichloroethylene or the like, polluting the air or water to purify the environment.