Abstract:
For reducing EMI and simplifying driving circuits, a plasma display panel includes a first substrate and a second substrate disposed facing each other, a plurality of barrier ribs disposed between the first and second substrates and forming a plurality of discharge cells, a phosphor layer formed in each of the discharge cells, a plurality of address electrodes formed on the second substrate, and a plurality of display electrodes formed on the first substrate in a direction crossing the plurality of address electrodes. Terminals of the plurality of display electrodes are located at a same side of the plasma display panel between the first substrate and the second substrate.
Abstract:
A highly reliable plasma display panel with less difference in wiring resistance, which can be driven at high speed even though the front or rear board has multilayer electrode wiring. Data electrode (9) is covered with dielectric layer (15), and priming electrode (14) is provided on dielectric layer (15). External wiring lead-out (19) of data electrode (9) is provided on rear substrate (200), and external wiring lead-out (18) of priming electrode (14) is provided on dielectric layer (15). Wiring lead-out (19) and wiring lead-out (18) have step (20) equivalent to the thickness of dielectric layer (15).
Abstract:
A plasma display device having a front substrate and a rear substrate is provided. The front substrate is constituted from a transparent first insulating substrate, and a plurality of stripe-shaped first electrodes including at least one discharge electrode and extending parallel to each other. The rear substrate is constituted from a second insulating substrate, a plurality of second electrodes extending parallel to each other, and a plurality of ribs forming a plurality of discharge spaces therebetween. The discharge electrode includes a transparent electrode, a black-colored first conductive layer, and a second conductive layer. The second conductive layer has a lower resistivity than the first conductive layer and is made with widths smaller than those of the first conductive layer and extends to the edge of the first insulating substrate.
Abstract:
A plasma display panel includes a first substrate and a second substrate opposing one another with a predetermined gap therebetween. Address electrodes are formed on the first substrate. Also, barrier ribs are mounted in the gap between the first substrate and the second substrate, and define discharge cells in a predetermined display region of the first and second substrates. Phosphor layers are formed in the discharge cells. Further, scanning electrodes and display electrodes are formed on the second substrate. The scanning electrodes and the display electrodes each have a pitch in the display region that is identical to a pitch in terminal regions, which are formed to the outside of the display region.
Abstract:
Although it is inevitable that the barrier rib fracture remains on the barrier rib from a pressure applied from opposing glass substrates surface, the present invention aims to assemble the panel display after removing the broken fragments of the barrier rib from the discharge chamber. According to the manufacturing method of the panel display for the present invention, the method includes the step of temporary aligning the two glass substrates face-to-face, the step of decompressing the barrier rib pattern area formed by the alignment of the two glass substrates by isolating the barrier rib pattern area from the normal atmospheric pressure, the step of cleaning at least one of the glass substrates on facing side by detaching one of the glass substrates after the pressure has been returned to the normal atmospheric pressure, and the step of forming the discharge chamber by pasting the two glass substrates together in the similar manner as the temporary alignment.
Abstract:
An electrode substrate of an AC type plasma display panel has a major surface with electrically connected display electrodes formed thereon and defining a display portion of the substrate. An insulating layer, of a ZnO-containing glass material containing substantially no lead, is formed on and covers the display portion of the major surface. The display electrodes may be a film of a transparent electrically-conducted material or a multi-layer film combination of a transparent electrically-conducted film of a first width and a metal film of a second, narrower width.
Abstract:
A display device is provided in which the number of gradation levels in a display is increased without increasing the number of terminals of a driving device. A display block of one pixel in an image display screen including a plurality of cells are provided with M (two or more) cells having the same light color, and the structures of these cells are made different partially from each other, so that (M+1) types of light emission quantity control including non-light emission can be performed.
Abstract:
A display device includes a plurality of emitting tubes constituted by elongated tubes each having a phosphor layer disposed and a discharge gas enclosed inside, a supporter for supporting the plurality of emitting tubes while making contact therewith, and a plurality of electrodes disposed on a surface of the supporter facing the emitting tubes for generation of electric discharges within the emitting tubes. The supporter has a connecting portion at an edge. The connecting portion of the supporter is detachably connected to a connector for applying a voltage to the plurality of electrodes.
Abstract:
A method for fabricating a plasma display panel includes preparing from front substrates an assembly for forming a display part for displaying an image, and preparing from rear substrates a rear substrate assembly. Only the outer edge of the front and rear substrate assemblies are coated with a first frit. An upper glass for mounting on the top of the front substrate assembly, and a lower glass for mounting on the bottom of the rear substrate assembly. Only the edges of the upper and lower glasses are coated with a second frit glass. An outer edge of the front and rear substrate assemblies are coated with a third frit glass and the upper and lower glasses are sealed to the front and rear substrate assemblies and the front and rear assemblies are sealed together and evacuated. A discharge gas is injected between the front and rear assemblies.
Abstract:
The address discharge in a plasma display device provided with a triple-electrode surface-discharge AC plasma display panel is controlled such that a potential difference occurring across a discharge slit between first and second electrodes selected for display is smaller than a potential difference occurring across a non-discharge slit between the first electrode not selected for display and the second electrode selected for display.