摘要:
An even-numbered harmonic adder adds a correction value to a first adjacent sample that is the next sample after a first local minimum sample, and subtracts a correction value from a second adjacent sample that is one sample before a local maximum sample. The even-numbered harmonic adder adds a correction value to a third adjacent sample that is the next sample after the local maximum sample, and subtracts a correction value from a fourth adjacent sample that is one sample before a second local minimum sample. An odd-numbered harmonic adder subtracts a correction value from the first local minimum sample and the second local minimum sample, and adds a correction value to the local maximum sample.
摘要:
The present disclosure provides systems and methods that include or otherwise leverage a machine-learned neural synthesizer model. Unlike a traditional synthesizer which generates audio from hand-designed components like oscillators and wavetables, the neural synthesizer model can use deep neural networks to generate sounds at the level of individual samples. Learning directly from data, the neural synthesizer model can provide intuitive control over timbre and dynamics and enable exploration of new sounds that would be difficult or impossible to produce with a hand-tuned synthesizer. As one example, the neural synthesizer model can be a neural synthesis autoencoder that includes an encoder model that learns embeddings descriptive of musical characteristics and an autoregressive decoder model that is conditioned on the embedding to autoregressively generate musical waveforms that have the musical characteristics one audio sample at a time.
摘要:
A digital sampling instrument for multi-channel interpolatative playback of digital audio data stored in a waveform memory provides improved interpolation of musical sounds by use of a cache memory.
摘要:
Sinusoidal waveforms are synthesized using one or more waveguide resonance oscillators. The waveguide resonance oscillator has two digital delay elements coupled to a digital waveguide junction. Each digital delay element receives a signal on its respective input node and outputs the received signal on its respective output node after a delay of one sample period. In the preferred embodiment, the waveguide junction has three digital signal adders and one signal multiplier interconnected so as to compute, once each sample period, a new input value for each digital delay element as a function of the two signals output by the digital delay elements. The multiplier coefficient used by the waveguide junction's multiplier determines the generated waveform's frequency of oscillation. The two output signals from the waveguide junction are sinusoidal waveforms that are 90 degrees out of phase with each other. When the first multiplier's coefficient value is timing varying, the waveguide resonance oscillator generates a sinusoidal waveform of time varying frequency and a second multiplier is used in the waveguide junction to maintain the sinusoidal waveform at a substantially constant amplitude. By using a first waveguide resonance oscillator to control the multiplier coefficient of a second waveguide resonance oscillator, frequency modulated waveforms are generated by the second waveguide resonance oscillator.
摘要:
A musical tone signal processor is included of a computation unit, a register, a controller and an interpolator, and imparts a variable acoustic effect to a musical tone signal. The computation unit repeatedly executes a cycle of computation steps applied to the musical tone signal, using a plurality of parameters so as to realize a desired acoustic effect. The register stores values of the respective parameters which are used individually in corresponding computation steps. The controller operates when a variation is requested in the acoustic effect for designating at least one registered parameter attributive to the requested variation so as to rewrite an old value of the designated parameter to a new value. The interpolator is responsive to the execution of the computation steps each cycle during a transient period of the variation for feeding synchronously to the computation unit an intermediate value of the designated parameter, which is interpolated progressively from the old value to the new value, to thereby ensure the smooth variation in the acoustic effect. The interpolator has a multiple of interpolation channels. A multiple of concurrently designated parameters can be assigned freely to the respective interpolation channels so as to carry out parallel interpolation of the designated parameters.
摘要:
A method for modelling time variant signals and multiple tone generating apparatus for a real time controllable, time variant waveform synthesizer. Speech or musical tone generation is accomplished by storing a DSQ (Demodulated Segment Quantization) codebook representation of a time variant signal. A DSQ codebook is a parametric representation of a time variant signal, wherein a signal's parameters are a time variant amplitude data sequence, a time variant pitch (advance/delay operator) data sequence, and a data sequence corresponding to a set of invariant waveshapes and their corresponding duration values. A signal is reconstructed by concatenating periodic segments of finite duration and, scaling its amplitude via a time variant amplitude data sequence and altering pitch or harmonic content via a time variant pitch data sequence. A plurality of unique DSQ codebooks and tone generators are assigned to a plurality of key actuations for multi-timbral operation.
摘要:
A musical tone synthesizing apparatus includes an excitation circuit, a resonator circuit, and a resampler. The excitation circuit generates an excitation signal, through a non-linear transformation, in response to an input signal supplied thereto. The resonator circuit resonates the excitation signal supplied thereto. The signal processing in the excitation circuit is executed in synchronization with a high sampling frequency N*Fs. The resampler converts the excitation signal of the high sampling frequency N*Fs into that of a normal frequency Fs. The excitation signal from the resampler, which has the normal sampling frequency Fs, is supplied to the resonator circuit. Accordingly, the resonator circuit can perform its operation at the normal sampling frequency Fs. The high-speed operation of the excitation circuit prevents the abnormal oscillation and the generation of an aliasing noise in the musical tone synthesizing apparatus.
摘要:
A musical tone generating apparatus utilizing a data compression method. A musical tone is sampled and is converted into waveform data. These waveform data are compressed into compressed data by a linear predictive coding method and further by a differential quantization method. The number of bits of each of the compressed data is thus significantly smaller than that of the waveform data. Thereafter, a memory stores the thus compressed data corresponding to an attack portion of the tone and a selected part of a sustain portion of the tone. Hence, it is possible to remarkably reduce the memory storage. When generating a musical tone, the memory reads out the compressed data of the attack portion and thereafter repeatedly reads out the compressed data of the selected part. The read-out compressed data are sequentially decoded into the original digital data. Thus, the whole waveform of the musical tone is reproduced.
摘要:
A musical tone generating apparatus for an electronic musical instrument utilizing a data compression system is disclosed. This musical tone generating apparatus is basically constructed by a memory storing difference data and a data reproduction circuit. The difference data is in advance obtained by converting a musical tone signal to be reproduced to digital sample data, effecting a linear prediction operation on the digital sample data to produce prediction data and calculating the difference between the digital sample data and the prediction data. The stored difference data are sequentially read from the memory. In the data reproduction circuit, the musical tone signal is reproduced by effecting a reverse operation of the linear prediction operation on the read difference data. In the case where the musical tone signal is a periodic signal, the efficiency of the data compression is further enhanced by subtracting from each difference data to be stored in the memory that difference data which was generated one period of the musical tone signal before the generation of the each difference data. The efficiency of the data compression is more further enhanced by subtracting from each difference data that difference data which was generated a predetermined number of sampling intervals before the generation of the each difference data.
摘要:
In a musical tone signal generating apparatus of a harmonic combination system, the coefficient values of a continuous harmonic to be formed are discretely sampled. Among the sampled values, the values between each two adjacent sampling points (i.e., each two adjacent frames) which vary are selected, and only difference coefficient data therebetween are stored in a memory. When the harmonic coefficient data is to be formed, the difference coefficient data is used for the coefficient varying values between each two adjacent sampling points, and a new coefficient value is calculated. However, as for the nonvarying values between each two adjacent sampling points, no calculation is performed and an already calculated coefficient value is used, thereby updating harmonic coefficients as a function of time, and hence generating a musical tone signal whose tone color is changed as a function of time.