Abstract:
A glucose sensor system comprising the steps of using as a sample discriminating parameter a ratio (I/&Dgr;I) of a measured current value I to the time-differential value of the current value &Dgr;I, defining a discrimination function that discriminates whether a sample is blood or control fluid and uses the discriminating parameter as an independent variable, quantitating as a discriminating index a numeric value obtained by substituting a discriminating parameter value into this discrimination function, and automatically discriminating, based on this index, whether the sample is blood or a control fluid, whereby a kind of the sample can be automatically quantitated by measuring electric current when a sensor system is used for quantitating the concentration of an analysis object in the sample.
Abstract:
Sensor systems and sensing methods for detecting one or more analytes in a fluid. A sensor includes a polymer capable of undergoing a proton-coupled redox reaction. The polymer includes a plurality of reactive substituents capable of undergoing a reaction with an analyte. Upon exposure of the sensor to a fluid containing the analyte, a response is detected based on a change in the pKa of the polymer.
Abstract:
An elastomeric cell is used as the disposable part of an apparatus for isoelectric focusing in free solution (without gels) in the 0.5 to 5 ml volume range. An inlet port is used for priming the cell and end-connectors for coupling with electrodes. A grid of parallel rods compresses the cell against a cold plate, thereby causing swelling of the skin of the cell between pairs of rods and forming contiguous fluid bubble-compartments for IEF separation. Before collection of separated fractions, the gap between the rods and the plate is further reduced so as to create distinct fluid compartments which now contain discrete products of separation. The separated fractions are collected by syringe-like devices by puncturing the elastomer skin. The plate, rods and deformable cell are capable of rotation or gentle rocking motion around the cell's main axis to avoid gravitational convection during the focusing process.
Abstract:
An apparatus for filling and cleaning channels and inlet ports of a microchip substrate is disclosed. A device of the apparatus comprising an array of tubes is inserted into each of the inlet ports of the microchip. The array of tubes of the device comprises a plurality of pressure tubes, surrounded by a plurality of vacuum tubes. In conjunction with this, pressurized solutions such as matrix or wash are introduced into common openings on the microchip that provide a passage to microchannels of the microchip with the use of pressure tip injectors of the apparatus. As matrix or wash solutions are pumped through the common openings and microchannels of the microchip substrate, wash solutions are pumped through the plurality of pressure tubes and everything is vacuumed through the plurality of vacuum tubes surrounding the plurality of pressure tubes. Various reservoirs of solutions are selected and allowed to flow by proper valve actuation. This process can be performed manually or easily automated by utilizing appropriate valves and control hardware/software.
Abstract:
An apparatus for determining ions strength in a solution. In relation to a chlorinator, a control circuit senses the strength of the brine by determining current flow through an associated chlorinator. Depending on the level of current flow, different signal configurations occur to advise of the status of the apparatus.
Abstract:
Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
Abstract:
A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.
Abstract:
A substrate with a plurality of microchannels is movably deployed with other movable objects that will load sample into the microchannels, stimulate molecular migration, read the results of the migration, remove and replace the substrate, and prepare for a new run. The other objects include a gripper for engaging and moving the substrate, an electrode array of fine wires suitable for fitting into the microchannels for electromigration, and a scanning detector for reading migration results. A sequence of automatic operations is established so that one substrate after another may be moved into position, loaded with sample, stimulated for molecular migration, read with a beam, and then removed and replaced with a fresh substrate.
Abstract:
A sensor for measuring electrochemical corrosion potential, and a method for manufacturing a sensor, the sensor comprising a tubular ceramic probe having a closed tip at one end, the probe at least partially filled with a powder comprising metal and metal oxide; a metal support tube having one end receiving an opposite end of the probe, and joined thereto by a braze joint therewith; an electrical conductor extending through the support tube and into the probe, and having an end buried in the powder for electrical contact therewith; and a protective band bridging the probe and tube at the joint for sealing thereof, the protective band consisting essentially of a metallic coating.
Abstract:
A test strip is provided for use in the determination of the concentration of an a chemical in blood. The test strip comprises a plurality of microneedles and a test area. Each microneedle is adapted to puncture skin and to draw blood. The test area is in fluid communication with the microneedles. The test area contains a reagent adapted to produce a reaction indicative of the concentration of the chemical in blood.