摘要:
The invention relates to a transmission sensor (1) for measuring the turbidity of a fluid, comprising a first and a second measuring section (2, 3). A transmitter (6) emits electromagnetic radiation into the two measuring sections (2, 3). A first receiver (14) is allocated to the first measuring section (2) and a second receiver (15) is allocated to the second measuring section (3). The transmitter (6) is inserted into a transmitter carrier (8) in such a way that the transmitter (6) is forced to adopt a predetermined oriented position. The receivers (14, 15) are inserted into a receiver carrier (18) in such a way that each of said receivers (14, 15) is forced to adopt a predetermined oriented position. A transmitter carrier holder (9) forcibly positions the transmitter carrier (8) in a predetermined location and a receiver carrier holder (19) forcibly positions the receiver carrier (18) in a predetermined location.
摘要:
A single-particle optical sensor, which has high sensitivity and responds to relatively concentrated suspensions, uses a relatively narrow light beam to illuminate an optical sensing zone nonuniformly. The zone is smaller than the flow channel so that the sensor responds to only a fraction of the total number of particles flowing through the channel, detecting a statistically significant number of particles of any relevant diameter. Because different particle trajectories flow through different parts of the zone illuminated at different intensities, it is necessary to deconvolute the result. Two methods of deconvolution are used: modified matrix inversion or successive subtraction. Both methods use a few basis vectors measured empirically or computed from a theoretical model, and the remaining basis vectors are derived from these few. The sensor is compensated for turbidity. Several embodiments are disclosed employing light-extinction or light-scattering detection, or both.
摘要:
The present invention is directed to an apparatus and a process which is low-cost, simple to use, reliable and long-lived and will effectively monitor the moisture condition of a volume of soil. In accordance with the invention, a light transmitting rod is placed into the soil so that its lower end is within the soil and its upper end is visible from outside the soil volume. The lower end of the rod is beveled to reflect light entering the rod from its upper end back toward the upper end. In accordance with the method of the present invention, observance of the presence or absence of light at the upper end of the rod determines the moisture content of the soil. That is, the presence of light confirms that the soil is dry, whereas the absence of light (a dark end) confirms that the soil is moist. In accordance with the apparatus of the present invention, the rod is placed into the soil and a light sensor is placed adjacent to or on the upper end of the rod to control a pump or valve for providing water to the soil.
摘要:
A method and assembly for sensing moisture on the exterior surface of a sheet of glass (14) comprising the steps of emitting light rays from an illuminator (12) on an illuminator axis (I) intersecting the glass (14) at an illuminator angle of incidence Inull to reflect the light rays on a reflection axis (R) at an angle (Rnull) of reflection to the glass (14) and capturing on an imaging axis (C) the reflected light rays including reflections of moisture (19) on the exterior surface of the glass (14). The method is characterized by isolating the reflection of moisture (19) from the direct reflection of the illuminator (12) to prevent the capture of the direct reflection of the illuminator (12). This can be accomplished by offsetting the imaging axis (C) from the reflection axis (R), or by stopping the direct reflection of the illuminator (12) from being captured, as with a beam stop (24).
摘要:
An apparatus for performing scattered radiation measurements in fluids comprising a sender (1)-for example a light source-to directly emit radiation into the fluid (5), a detector (2) to measure scattered radiation in the fluid, at least one separator (4) that is provided between the fluid and the sender and between the fluid and the detector, and that allows radiation to pass through it, wherein, at least one optical deflection element (8, 9) is provided between the sender and the separator and/or between the detector and the separator, in order to deflect the emitted beam/the scattered beam toward the perpendicular onto the separator. This scattered radiation measuring apparatus is characterized by having a very compact design.
摘要:
The present invention creates an apparatus for determining physical collective parameters of particles in gases, which comprises a measuring chamber with light entrance ports (121) and exit ports (123, 124) for electromagnetic radiation, an emission source (113) for electromagnetic radiation being provided and at least two detection apparatuses (114, 115) for determining the intensity of electromagnetic radiation scattered at the particles being provided, and the detection apparatuses (114, 115) detecting electromagnetic radiation of different scattering regions. The present invention further creates a method for determining physical collective parameters of particles in gases, the particles being exposed to electromagnetic radiation which is scattered at the particles, wherein the intensities of the scattered radiation of at least two different scattering regions are determined and their ratio is taken subsequently. Particularly in gases which contain particles in a wide size range, the present apparatus according to the invention and the method according to the invention permit the exact determination of aerosol particles of less than 10 nullm, in particular of less than 5 nullm. With the aid of one variant, it is possible to carry out simultaneous determination of coarse particles with a mean particle size of more than 10 nullm, for example droplets or dusts. Such an apparatus and the method according to the invention are used, in particular, to analyze waste gases in process plants.
摘要:
A particle characterisation apparatus (10) (FIG. 1) comprises a test cell (12) arranged to contain a sample, or test medium, (14) and an optical radiation source (16) aligned so that it emits radiation directed to be incident on the test medium (14). The optical radiation incident on the test medium (14) is scattered and the scattered components are collected by optical waveguides (18) having collecting terminations (20) radially disposed about the test cell (12) at predetermined angular positions. The collected optical radiation is carried by the waveguides from the test cell and emitted through radiation emitting terminations (24) into detection means (22). The detection means (22) comprises detectors (28) mounted on a rotatable carrier (30) and disposed in alignment with the radiation emitting terminations to detect the optical radiation being emitted therefrom. In use, each detector (28) is rotated to sequentially detect the radiation emitted from each emitting termination (24) in turn.
摘要:
In an apparatus for the conversion of a continuous liquid stream into a stream of liquid droplets, which are discharged from a discharge nozzle of the capillary through which the liquid stream is conducted, a flow acceleration device is disposed on the capillary near the discharge nozzle thereof for accelerating the droplet stream depending on a first electrical signal, which is applied to the acceleration device, and a second electrical signal which is generated by a laser detection means provided for sensing laser light of a beam directed through the travel path of the droplets to the detection means for sensing the passage of a droplet and means for generating from the first and second electrical signals a time nullt which indicates the time needed for a liquid droplet to travel from the discharge nozzle to the laser light beam.
摘要:
According to the present invention, there is provided a light scattering type particle detector, using a semiconductor laser as a light source, for detecting particles contained in sample fluid which defines a flow path, wherein laser light generated from the semiconductor laser is irradiated to irradiate a region of the flow path with a concave mirror and thereby a particle detecting region is defined. According to the present invention, there is also provided a laser oscillator wherein the optical axis of a semiconductor laser for generating pumping laser light has a predetermined angle with respect to the optical axis of a laser medium for irradiating laser light by pumping. Using such a laser oscillator, laser light irradiated from the laser oscillator is condensed to irradiate a region of a flow path defined by sample fluid, and thereby a particle detecting region is defined. Particles contained in the particle detecting region are detected by receiving scattered light with a light receiving portion.
摘要:
In a method of optically determining a level of liquid in a liquid-filled container a light guide body projects into the container. The light guide body has an end face for the entry and exit of light and stepped side faces forming separate reflection faces. The light is totally reflected at those reflection faces which are not immersed in the liquid but refracted into the liquid at immersed reflection faces. The totally reflected light is reflected back to the end face. The intensity of the light beam reflected totally by each reflection face back to the end face is measured separately. Measurement signals for determining the filling level are subjected to plausibility checking to recognise and eliminate measurement faults and errors. The invention can be used for determining the level of liquid in a container or tank for fuel, washing water, oil, hydraulic fluid and the like in a motor vehicle.