Abstract:
The invention relates to a method and a device for obtaining a low-noise optical signal. According to the method, a luminous beam is injected through two apertures and after detection respectively a basic optical signal (21) and a corrective optical signal (22) are generated. Both optical signals obtained (21, 22) are subtracted, so that a resulting optical signal is generated, forming the low-noise optical signal. The apertures are preferably two slits of a spectroscope, the optical signals being expressible relative to the wavelength.
Abstract:
An apparatus for inspecting a wafer includes a handling unit for supporting, rotating and moving the wafer in horizontal and vertical directions, a first image acquisition unit for acquiring a first image corresponding to an upper surface of the wafer supported by the handling unit, a second image acquisition unit for acquiring a second image, a third image and a fourth image corresponding to a peripheral portion of the upper surface, a side surface and a lower surface of the wafer supported by the handling unit, respectively, a first driving unit for rotating the second image acquisition unit about a peripheral portion of the wafer supported by the handling unit in order to acquiring the second, third and fourth images, and an image processing unit for inspecting defects of the wafer supported by the handling unit from the first to fourth images.
Abstract:
The present invention relates to a method and a device for determining temperature-dependent parameters, such as the association/dissociation parameters and/or the equilibrium constant of complexes that comprise at least two components, wherein the first components, which are in a liquid phase, are contacted with measuring points located preferably on a planar optical waveguide of a reaction carrier and formed by second components linked to the solid reaction carrier and specifically binding to said first components, with the aid of a preferably heatable means for contacting the liquid phase and the reaction carrier under formation of complexes. Fluorescent dyes bound to the first components and/or the second components are excited in the surface area of the planar optical waveguide, preferably by the evanescent field of excitation light coupled into the planar optical waveguide, for emitting fluorescent light. Detection of the emitted fluorescent light takes place in the surroundings of the optical waveguide. The formation or the dissociation of the complexes comprising first components and second components is observed as a function of temperature.
Abstract:
A spectroscopy method in which a sample is scanned without moving the sample. Light from the sample 16 is collected by a lens 14 and analysed at a spectrum analyser 28 before being focused onto a photodetector 32. Light from the focal point of the lens 14 is brought to a tight focus on the photodetector 32 whilst light from in front of or behind the focal point comes to a more diffuse focus. Light from the pixels on the photodetector 32 corresponding to the focal point of the lens 14 is processed, whilst light from pixels outside this region is ignored, thus forming a nullvirtual slitnull. The sample 16 is scanned in a vertical direction by moving the nullvirtual slitnull up and down, by changing the designated rows of pixels from which data is analysed. The sample is scanned in a horizontal direction by moving a vertical slit 24 in the light path in a horizontal direction.
Abstract:
A method of detecting wear on a substrate including coating a composition that includes a fluorescent compound on the surface of a first substrate, exposing the coated surface to wear, exposing the coated surface to radiation capable of exciting the fluorescent compound, and detecting the presence or absence of fluorescence.
Abstract:
A color image forming apparatus, when a white LED is made to emit light to thereby detect reflected light from a color image, changes a color measuring condition in adaptation to a reflectance predicted from the forming condition of the color image to be detected and detects the amount of reflected light by photodiodes (R,G,B), and adjusts the image forming condition from the detected amount of reflected light of each color image. Thereby, irrespective of the reflectance of each color image, the color measurement of each color image is effected with good accuracy, and the hue and density of the color image to be detected are accurately detected to thereby form a color image excellent in color reproducibility.
Abstract:
A spectroscopic method, preferably Raman scattering, is used to rapidly determine the general health or stress status of living plants and plant products, including agricultural crops, forests, and harvested fruits and vegetables. In the preferred embodiments, carotenoid levels are used to provide an indication of oxidative deterioration. Based upon the results of the analysis, further action may or may not be taken, for example, in terms of choosing, picking, harvesting or sorting the agricultural product in accordance with the carotenoid level. Concentration levels of an analyte substance can be determined relative to an external standard, to each other, or relative to another substance in the item being analyzed. Carotenoids such as lycopene, beta-carotene, lutein, violaxanthin, neoxanthin, antheraxanthin, and zeaxanthin are determined according to the invention, through other plant components may be analyzed such as other terpenes, polyenes, chlorophyll, proteins, starches, sugars, overall nitrogen levels, flavonoids, and vitamins. The hardware associated with the invention may be field portable or mounted on a piece of equipment such as a harvester or sorter.
Abstract:
A system and method for fast peak finding in an optical spectrum prioritizes the information it first generates and how the information is then forwarded from the system to a host computer, for example. A spectrum detection subsystem generates a spectrum of an optical signal. An analog-to-digital converter converts the spectrum into sample data. Finally, a data processing subsystem first detects the spectral locations of peaks in the spectrum using the sample data and then uploads the peak information to a host computer before performing processing to determine the shapes of the peaks and/or noise information for the optical signal, for example. The system is thus able to quickly find some information, such as whether or not channels or carriers are present, at what frequency the carriers are operating, and the carriers' power level, and send this information to the host computer. In contrast, information concerning spectral shape or the noise floor sent later in time.
Abstract:
An optical system (20) provides a variable dispersion that helps to collect multi-spectral information on an object within the field of view. The system (20) includes at least two sets (24, 26) of optical elements (42x 42y, 44x, 44y) that have minimal deviation of a center wavelength and a non-zero deviation of at least one other wavelength. By rotating the sets of optical elements (24, 26) relative to one another or together, the degree of wavelength dispersion and the direction of the wavelength dispersion can be varied, respectively. By selectively rotating the sets of optical elements, the system also can be operated in a non-dispersed nullwhite lightnull mode with no net dispersion at the image plane.
Abstract:
A system and method for fast peak finding in an optical spectrum prioritizes the information it first generates and how the information is then forwarded from the system to a host computer, for example. A spectrum detection subsystem generates a spectrum of an optical signal. An analog-to-digital converter converts the spectrum into sample data. Finally, a data processing subsystem first detects the spectral locations of peaks in the spectrum using the sample data and then uploads the peak information to a host computer before performing processing to determine the shapes of the peaks and/or noise information for the optical signal, for example. The system is thus able to quickly find some information, such as whether or not channels or carriers are present, at what frequency the carriers are operating, and the carriers' power level, and send this information to the host computer. In contrast, information concerning spectral shape or the noise floor is sent later in time.