Abstract:
There is provided an information processing apparatus including a macro measurement analysis calculation section configured to calculate detection data from a macro measurement section adapted to perform sensing at a first spatial resolution for a first measurement range for a measurement target, a micro measurement analysis calculation section configured to calculate detection data from a micro measurement section adapted to perform sensing at a second spatial resolution for a second measurement range, the second spatial resolution being higher than the first spatial resolution, the second measurement range being included in the first measurement range for the measurement target, and an inverse model calculation section configured to acquire a model parameter used for an inverse model calculation using a calculation result from the macro measurement analysis calculation section, on a basis of the detection data from the micro measurement section determined by the micro measurement analysis calculation section.
Abstract:
The present disclosure relates to methods and systems for obtaining image information of an organism including a set of optical data; calculating a growth index based on the set of optical data; and calculating an anticipated harvest time based on the growth index, where the image information includes at least one of: (a) visible image data obtained from an image sensor and non-visible image data obtained from the image sensor, and (b) a set of image data from at least two image capture devices, where the at least two image capture devices capture the set of image data from at least two positions.
Abstract:
The method for determining the presence of a molecule having a Raman resonance generally comprises illuminating a sample with a first radiation beam, the first radiation beam having a first excitation wavelength being tuned to a Raman resonance of the molecule; receiving a first return signal from the sample following illumination of the sample with the first radiation beam; measuring a first intensity of the first return signal using an intensity detector; illuminating the sample with a second radiation beam, the second radiation beam lacking the first excitation wavelength and having a second excitation wavelength being different from the first excitation wavelength; receiving a second return signal from the sample following illumination of the sample with the second radiation beam; measuring a second intensity of the second return signal using an intensity detector; and determining the presence of the molecule in the sample based on the first and second intensities.
Abstract:
A system for analyzing remotely sensed photos of a forest or other areas of interest uses a computer system to increase the variation in NIR data having values that represent items of interest. In one embodiment, a computer system applies a stretching function to the NIR data to increase their variation. The objective spectral stretched NIR data is used to differentiate different types of vegetation in the remotely sensed image. Objective-based Vegetation Index (OVI) values are calculated from the objective spectral stretched NIR data that allow different types of vegetation to be distinguished. In one embodiment, the OVI values are used to differentiate hardwoods from conifers in a digital aerial photo of a forest.
Abstract:
A system for analyzing remotely sensed photos of a forest or other areas of interest uses a computer system to increase the variation in NIR data having values that represent items of interest. In one embodiment, a computer system applies a stretching function to the NIR data to increase their variation. The objective spectral stretched NIR data is used to differentiate different types of vegetation in the remotely sensed image. Objective-based Vegetation Index (OVI) values are calculated from the objective spectral stretched NIR data that allow different types of vegetation to be distinguished. In one embodiment, the OVI values are used to differentiate hardwoods from conifers in a digital aerial photo of a forest.
Abstract:
A system for remote quantitative detection of fluid leaks from a natural gas or oil pipeline by use of an airborne platform; including at least one laser light source for nearly simultaneous illuminating two or more target fluids and a background, wherein the two or more target fluids are characterized by two or more absorption wavelengths, and wherein the background has a different wavelength than either of the two or more target fluids. The illumination source is pointed based on a positioning system while in a geometric area along a path two or more target fluids are scanned for using the illumination sources. A signal detector detects the two or more target fluids using quantitative signal processing. Also included are a controller, a path planning and path finding tool for the positioning of the airborne platform, and a communicator for communicating the presence of the detected leak.
Abstract:
From the crop of a predetermined area in a plant field under exposure to natural light, a reflectivity of the light having relation to crop information such as nitrogen content rate is measured by a camera; the crop information as first crop information is obtained from the first crop related formula established in advance for obtaining the crop information from the reflectivity; light is irradiated on crop leaf blades in the same area as the predetermined area and an amount of the light is measured; the crop information as second crop information is obtained from the second crop related formula established in advance for obtaining the crop information from the amount of the light; differences are calculated from the first crop information and the second crop information; the first crop information is obtained from the unknown crop in the predetermined area within the crop field of the same area; the first crop information is corrected based on the differences; and the nutritious diagnosis of the crop in the field is conducted by the corrected first crop information. In conducting diagnosis of crop by measuring the reflection light amount from the crop, since compensation or correction is performed, no great errors occur caused by differences in the measurement locations and the planting densities, and the diagnosis of the crop is simple and easy and, more over, the precision in the measuring is enhanced.
Abstract:
The present disclosure relates to methods and systems for obtaining image information of an organism including a set of optical data; calculating a growth index based on the set of optical data; and calculating an anticipated harvest time based on the growth index, where the image information includes at least one of: (a) visible image data obtained from an image sensor and non-visible image data obtained from the image sensor, and (b) a set of image data from at least two image capture devices, where the at least two image capture devices capture the set of image data from at least two positions.
Abstract:
Systems, and methods for controlling a modular system for improved real-time yield monitoring and sensor fusion of crops in an orchard are disclosed. According to some embodiments of the invention, a modular system for improved real-time yield monitoring and sensor fusion may include a collection vehicle, a modular processing unit, a volume measurement module, a three-dimensional point-cloud scanning module, an inertial navigation system, and a post-processing server. As the collection vehicle travels through an orchard, the volume measurement module calculates volume measurements of the windrow, the three-dimensional point-cloud scanning module assembles point-clouds of each plant in the orchard, and the inertial navigation system calculates geodetic positions of the collection vehicle. The modular processing unit may fuse the collected data together and transmit the fused data set to a post-processing server. The post-processing server may process the geodetic position data for errors which may be used for geo-referencing the fused data.
Abstract:
A precision molecular and motion sensor utilizing a Dispersed Fourier Transform Spectrometer to remotely sense targets. Remote sensing is conducted at various ranges, against various ambient backgrounds, to detect, classify, identify, characterize, and discriminate targets. A Dispersed Fourier Transform Spectrometer is expanded by modification and augmentation of existing optical, mechanical, and software components to enable basic terrestrial use while providing specific optimization for various applications which are designed with emphasis on the sensitivity of the Dispersed Fourier Transform Spectrometer.