Abstract:
A heat treatment system for controlling the temperature in a processing vessel. The system includes a cylindrical processing vessel; a supporting table, raised by a support from the bottom portion of the processing vessel, for mounting thereon an object to be processed; and a processing object heating part provided in the supporting table, for heating the object to be processed. In addition a thermoelectric conversion element capable of selectively heating or cooling is provided in the bottom portion of the processing vessel, a resistive heater is provided in the side wall of the processing vessel, and a temperature control part for controlling the operations of the thermoelectric conversion element and the resistive heater is provided. Thus, it is not only possible to appropriately control the temperature in the processing vessel, but it is also possible to reduce space and energy, by combining the resistive heater with a thermoelectric conversion element.
Abstract:
Infrared oven for heating a plurality of preforms and comprising: a conduit through which said preforms move, a flow of outside air that flows through said conduit from an intake mouth to an exhaust mouth under the action of a blower, a plurality of infrared lamps irradiating the preforms in said conduit, in which a reflective surface is arranged downstream of said lamps and is provided with apertures through which the flow of outside air passes prevailingly. The axis of the preforms is oriented in a manner that is substantially perpendicular to the direction of flow of said outside air. The infrared lamps are arranged substantially downstream of the preforms, and are separated from each other by appropriate intervals through which said flow of outside air passes, in which said flow of outside air first passes through said intervals separating said preforms and then through said intervals provided between said infrared lamps. A reflective grid, provided with apertures for the flow of outside air to partially pass therethrough, is arranged upstream of said preforms.
Abstract:
A thermal processing apparatus capable of rapidly increasing and decreasing a temperature of a target object in a process chamber being thermally treated. A heat source heats the target object and a cooling arrangement including a bottom part of the process chamber cools the object. A gas having high thermal conductivity is introduced into the chamber to promote heat transfer. A moving mechanism relatively moves the object with respect to the cooling arrangement.
Abstract:
An apparatus for supporting a glass substrate is provided. In one embodiment, a substrate support is provided having a base structural member and an upper top portion having a surface thereon adapted to minimize friction and/or chemical reactions between the substrate support and a glass substrate supported thereon. The substrate supports may be utilized in various chambers such as load locks chamber and chambers having thermal processes.
Abstract:
A reactor chamber is positioned between a top array of heat lamps and a bottom array of heat lamps. At least one of the heat lamps forming the top and bottom arrays features a segmented filament such that power output along the length of the heat lamp differs. In one configuration, the heat lamp has a pair of high energy output regions spaced from each other by a lower energy output region. In some configurations, at least one of the heat lamps forming the top and bottom arrays is non-linear, such as U-shaped. In further configurations, a non-linear heat lamp has a segmented filament with segments or areas of different winding density.
Abstract:
A single-substrate-heat-processing apparatus includes an airtight process chamber, the interior of which is partitioned into a process space and a lower space by a mount plate and a shield frame. Heating lamps are disposed at a position outside the process chamber and below the mount plate. The mount plate is supported by a shield frame via an isolator, which has a thermal conductivity lower than that of the mount plate. The isolator is formed of a lower member and an upper member. The upper member has outer and inner cover portions, which cover the inner edge of the shield frame and the outer edge of the mount plate, respectively, in a non-contacting state.
Abstract:
The heat treatment apparatus has the reaction vessel and the holding tool contained in the reaction vessel for holding a plurality of objects to be processed. The lower end of the reaction vessel is closed by the cover and the insulating unit is installed between the cover and the holding tool. On the top of the insulating unit, the heating unit having a heating resistor composed of a carbon material of high-purity sealed in a quartz plate is installed. Heat insulators are installed under the heating unit. The insulating unit is fixed to the cover, and the revolving shaft for rotating the holding tool passes in the center of the insulating unit, and the electric feeding line member for feeding electric power to the heating unit is arranged outside of the insulating unit.
Abstract:
The heat treatment apparatus of the present invention comprises a chamber, a hot plate for supporting and heating a substrate in a chamber, a gas supply mechanism having a single or a plurality of gas blow-out ports and arranged in an upper space above the hot plate in the chamber, for supplying a gas along the substrate so as to cover the substrate placed on the hot plate, and an exhaust mechanism having a single or a plurality of gas converge/exhaust ports which face the gas blow-out ports with the hot plate interposed therebetween, for converging and exhausting the gas blown out from the gas blow-out ports, from the chamber, the gas converge/exhaust ports having an effective exhaustion opening length L2 which is shorter than an effective blow-out opening length L1.
Abstract:
A thermal processing apparatus includes a reaction vessel into which an object to be processed is conveyed, a furnace body disposed so as to surround the reaction vessel, and a heater disposed in a region surrounding the reaction vessel in the furnace body. The heater includes heating elements, each having a sealing member made of a ceramic material and a linear flexible resistance heat generating member sealed by the sealing member.
Abstract:
A substrate processing assembly includes an edge support and a heat distributing plate to absorb and transfer heat energy via radiation from a radiant heat source to a substrate on the edge support. The edge support defines a substrate support location to support a substrate at an edge of the substrate during processing. The assembly further includes a first heat distributing plate positioned generally parallel to the edge support. A plurality of edge support holding arms is coupled to the edge support. The plurality of edge support holding arms is also coupled to the first heat distributing plate to hold the first heat distributing plate spaced apart from the edge support. In another embodiment, the assembly can include a second heat distributing plate spaced apart from the edge support. In yet another embodiment, the substrate processing assembly can be used in a substrate processing apparatus that includes a chamber within which the assembly is located and a radiant heat source to provide radiant heat to the chamber. The structure of the processing assembly provides substrate processing assembly components that have a low thermal mass such that the temperature of the chamber can be quickly ramped up to operating temperature, thus significantly decreasing the time to process a substrate such as a semiconductor wafer.