Abstract:
A human hair fiber treatment agent for treating human hair fibers separated from the human head and artificially fixed at one part of the longitudinal direction, wherein the human hair fiber treatment agent comprises the following components (A) to (C) in the formulation thereof, and the content of the component (A) is 1% by mass or more: (A): formaldehyde or a hydrate thereof; (B): a melamine derivative represented by the formula (1) wherein R1 to R3 each represent a hydrogen atom, a hydroxymethylamino group, a hydroxy group, a halogen atom, a phenyl group, a linear or branched alkyl group or alkenyl group having 1 or more and 6 or less carbon atoms, or a linear or branched alkoxy group or alkenyloxy group having 1 or more and 6 or less carbon atoms; and (C): water.
Abstract:
Crosslinked aminosiloxanes obtainable by reaction of identical or different aminosiloxanes with identical or different epoxide components which are water-soluble hydrocarbons, the hydrocarbons comprising oxygen as well as carbon, and optionally further elements selected from nitrogen, sulphur and phosphorus, the hydrocarbon having on average more than one terminal epoxy group, the epoxy group being a carbooxirane radical, and, further, not more than 50% of all the amino groups having undergone reaction with an epoxide group.
Abstract:
Low viscosity polyorganosiloxanes comprising a) at least one polyorganosiloxane group, b) at least one quaternary ammonium group, c) at least one terminal ester group, methods of the manufacture thereof and their use for the modification of surfaces of substrates.
Abstract:
Disclosed are fiber-reinforced composites having untraditionally low fiber loading and a novel form of hybridized interface. Typical examples of fiber-matrix combinations capable of developing such interfaces include surface-phosphonylated ultrahigh molecular weight polyethylene (UHMW-PE) and polypropylene (PP) yarns (or fabric constructs) and epoxy resin, acrylic resin, and cement. For further improvement of the hybridized interface and the overall composite properties, the surface-phosphonylated fiber may be post-treated with reagents that will improve the abridging of the fibers to the matrix through physicochemically hybridized interfaces. Compared with composites having unmodified fiber, those based on modified ones, with or without post-treatment, exhibit a substantial increase in physicomechanical properties at exceptionally low fiber loading, ranging from about 0.1 to 35 percent by weight, preferably from about 0.1 to about 20 percent by weight, most preferably less than 10 percent by weight. Among these properties are maximum tensile strength, fracture toughness, and modulus.
Abstract:
The instant invention pertains to a liquid silicone rubber coating composition for application to air bags that is comprised of (A) a diorganopolysiloxane having at least 2 alkenyl groups in each molecule, (B) an organopolysiloxane resin, (C) an inorganic filler, (D) an organohydrogenpolysiloxane having at least 2 silicon-bonded hydrogen atoms in each molecule, (E) a platinum group metal catalyst, and (F) an epoxy group-containing organosilicon compound. The liquid silicone rubber coating composition of the instant invention is capable of coating synthetic air bag fabrics without the use of a diluting solvent and at the same time that has an excellent adhesion to and infiltrability into synthetic air bag fabrics.
Abstract:
The present invention discloses non-hydrolyzable, block, (AB).sub.n A type, copolymers comprising alternating units of polysiloxane and amino-polyalkyleneoxide and provides a method for the preparation of these copolymers. Also provided is the use of these copolymers as softeners, in particular durable, hydrophilic textile softeners, which improve tactile properties of the textiles substrates treated with the commercial soil release finishes, without substantially detracting from their properties. The copolymers of the present invention have alternating units of polysiloxane �X(C.sub.a H.sub.2a O).sub.b R.sup.2 �(SiO(R.sup.1).sub.2 !.sub.c Si(R.sup.1).sub.2 R.sup.2 (C.sub.a H.sub.2a O).sub.b X!and polyalkyleneoxides �YO(C.sub.a H.sub.2a O).sub.d Y!wherein R.sup.1 is a C.sub.1 to C.sub.4 alkyl, preferably methyl, R.sup.2 is a divalent organic moiety, X and Y are divalent organic groups selected from a secondary or tertiary amine and a ring opened epoxide, such that when X is a ring opened epoxide, Y is an amine and vice versa, a=2 to 4, preferably 2 to 3, b=0 to 100, d=0 to 100, b+d=1 to 100, preferably 10 to 50, and c=1 to 500, preferably 10 to 100.
Abstract:
Disclosed is a base fabric for automobile air bags having excellent flexibility to ensure compact folding of the air bag and high flame retardancy for safety in hazard, which consists of a woven fabric web and a rubbery coating layer formed thereon from a silicone-based coating composition in the form of an aqueous emulsion comprising: (a) 100 parts by weight of an organopolysiloxane represented by the general formula X--�--SiR.sup.1.sub.2 --O--!.sub.m --�--SiZ.sub.2 --O--!n-SiR.sup.1.sub.2 --X, in which R.sup.1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, Z is R.sup.1, OR.sup.2 or --(--O--SiR.sup.1.sub.2 --).sub.k --OR.sup.2, R.sup.2 being a hydrogen atom or R.sup.1 and k being a positive integer not exceeding 1000, X is R.sup.1 or OR.sup.2, m is a positive integer of 100 to 10,000 and n is 0 or a positive integer not exceeding 1,000 and which contains at least two OR.sup.2 groups in a molecule; (b) from 0.5 to 50 parts by weight of an organohydrogen polysiloxane having, in a molecule, at least three silicon-bonded hydrogen atoms; (c) from 0.5 to 100 parts by weight of a finely divided silica filler or a powder of an polyorganosilsesquioxane; (d) from 0.1 to 20 parts by weight of an alkoxy silane compound having, in a molecule, at least one amido group and at least one carboxyl group or a partial hydrolysis-condensation product thereof: (e) from 0.1 to 20 parts by weight of an alkoxy silane compound having, in a molecule, at least one epoxy or amino group or a partial hydrolysis-condensation product thereof; and (f) from 0.01 to 10 parts by weight of a curing catalyst for the composition.
Abstract:
A composition is disclosed which comprises an amino radical-containing organopolysiloxane and an organopolysiloxane containing at least 3 epoxy radical-containing organic groups in each molecule. The composition of the present invention imparts to polyester fibers excellent smoothness, elastic resilience, and compressive recovery, as well as a high resistance to permanent setting
Abstract:
A highly stable emulsion of an organopolysiloxane suitable for use as a fabric-finishing agent is proposed which is prepared by mixing and agitating (a) an organopolysiloxane of a linear molecular structure having polyoxyalkylene groups and amino- or epoxy-substituted groups bonded to the silicon atoms, (b) a specified amount of a, preferably, non-ionic surface active agent having a specific HLB value and (c) water in an amount to form an oil-in-water type emulsion.
Abstract:
A textile finishing agent is described which contains a water-soluble polysiloxane with polyether and epoxypolyether lateral chains and preferably moreover an antimicrobial substance, a crosslinking agent and catalysts.