摘要:
An inoculant for the manufacture of cast iron with spheroidal graphite is disclosed, the inoculant has a particulate ferrosilicon alloy having
between 40 and 80% by weight of Si; 0.02-8% by weight of Ca; 0-5% by weight of Sr; 0-12% by weight of Ba; 0-15% by weight of rare earth metal; 0-5% by weight of Mg; 0.05-5% by weight of Al; 0-10% by weight of Mn; 0-10% by weight of Ti; 0-10 by weight of Zr; the balance being Fe and incidental impurities in the ordinary amount, wherein the inoculant additionally contains, by weight, based on the total weight of inoculant: 0.1 to 15% of particulate Bi2S3, and optionally between 0.1 and 15% of particulate Bi2O3, and/or between 0.1 and 15% of particulate Sb2O3, and/or between 0.1 and 15% of particulate Sb2S3, and/or between 0.1 and 5% of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or between 0.1 and 5% of one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, a method for producing such inoculant and use of such inoculant.
摘要:
The present disclosure belongs to the field of materials with metal structures, and specifically relates to a preparation method for a nano-oxide dispersion strengthened steel. The method includes mixing a ferrochromium alloy, a ferrotungsten alloy, a ferroalloy containing a rare earth element, an oxygen source and a reduced iron powder to obtain a mixture; wrapping the mixture in a steel strip, and conducting drawing reducing to obtain a flux-cored wire; and conducting arc additive manufacturing on the flux-cored wire on a substrate, and then conducting heat treatment to obtain the nano-oxide particle dispersion strengthened steel.
摘要:
Provided is a method for preparing an amorphous strip master alloy. The method includes: providing an amorphous alloy and cementite Fe3C; and placing the amorphous alloy and the cementite Fe3C in a smelting furnace for smelting treatment to obtain the amorphous strip master alloy, wherein elements constituting the amorphous alloy include Fe element, Si element and B element. An amorphous strip master alloy prepared by the preparation method is also provided.
摘要:
A closure element for an internal passage in a component, and a related method and turbine blade or nozzle are disclosed. The closure element includes a spherical body made of a first superalloy, and a plurality of extensions extending from a surface of the spherical body. The plurality of extensions made of the same, similar or different material other than the first superalloy. Subjecting the component to at least one thermal cycle causes a braze material to form a metallurgical bond with the spherical body, the plurality of extensions and the passage wall to seal the internal passage.
摘要:
Disclosed is a method of manufacturing a rare earth permanent magnet with substantially improved magnetic property. The method comprises: preparing a magnet master alloy by melting an R-T-B based alloy; pulverizing the magnet master alloy to provide a magnet powder; pressurizing the magnet powder as applying magnetic field to the magnet powder under an inert atmosphere to form a magnet molded body; sintering the magnet molded body under a vacuum atmosphere to obtain a sintered magnet molded body having oxygen content of about 0.1 wt % or less based on the total weight of the sintered magnet molded body; and treating the sintered magnet molded body with Dy and Tb.
摘要:
The invention relates to ferrous metallurgy, in particular to producing an alloy for reducing, doping and modifying steel. The invention makes it possible to improve the quality of the steel treated with the inventive alloy owing to the deep reduction and modification of non-metallic impurities and the simultaneous microalloying of steel with barium, titanium and vanadium. Barium, titanium and vanadium are added into the inventive alloy, which contains aluminium, silicium, calcium, carbon and iron, with the following component ratio, in mass %: 45.0-63.0 silicium, 10.0-25.0 aluminium, 1.0-10.0 calcium, 1.0-10.0 barium, 0.3-0.5 vanadium, 1.0-10.0 titanium, 0.1-1.0 carbon, the rest being iron.
摘要:
Raw material bodies such as briquettes, for use in the production of silicon or silicon alloys, are formed by mixing a pitch and caking coal at a temperature above 100.degree. C. and up to 200.degree. C. to form a pitch/coal alloy. This hot binder composition is mixed with sand and a noncaking carbon carrier at a temperature in this range to form the starting composition from which preforms are pressed. The preforms are subjected to a heat treatment which involves raising the temperature to above 450.degree. C., preferably in a sand filled rotary furnace to harden the preforms into the bodies.
摘要:
An inoculant alloy based on ferrosilicon or silicon for the manufacture of cast iron with lamellar, compact or spheroidal graphite is described, this alloy comprising(a) between 0.1 and 10% of barium and/or zirconium,(b) less than 2% of aluminum and(c) 0.3% of calcium.This inoculant alloy is distinguished by particularly good suppression of the precipitation of carbide and by its preparation process which is industrially simple and thus has favorable costs.