摘要:
An inoculant for manufacturing cast iron with lamellar, compacted or spheroidal graphite is disclosed. The inoculant has a particulate ferrosilicon alloy having 40 and 80% by weight of silicon, 0.5-5 wt % of calcium and/or strontium and/or barium, 0-10 wt % of rare earths, 0-5 wt % of magnesium, less than 5% by weight of aluminium, 0-10 wt % of manganese and/or zirconium, and the balance being iron, wherein the inoculant additionally contains 0.1-10 wt % of particulate bismuth oxide particles and optionally 0.1-10 wt % of one or more particulate metal sulphides and/or one or more particulate iron oxides, where the particulate bismuth oxide is mixed or blended with the ferrosilicon particles, or is simultaneously added to cast iron together with the particulate ferrosilicon particles.
摘要:
A casting solidification analysis method, which can analyze positions of shrinkage cavities more accurately than in the past, a casting method using the above method, and an electronic program are provided. A following casting solidification analysis method is provided. An amount of expansion/shrinkage for each solidification step length separated by inflection points in a cooling curve is determined, by setting a solid phase ratio at a completion of pouring to 0, setting a solid phase ratio at an end of solidification to 1.0, and determining the expansion/shrinkage amount for the each solidification step length by proportionally distributing the each solidification step length to the total solid phase ratio length.
摘要:
A new alloy, obtained through a new method, which presents the mechanical and physical properties of the gray iron alloy, with a wide interface range of the CGI's tensile strength (TS). This new alloy, flake graphite based, is a High Performance Iron (HPI) alloy. Therefore, besides its high tensile strength, the HPI alloy presents excellent machinability, damping vibration, thermal conductivity, low shrink tendency and good microstructure stability (compatible with gray iron alloys). HPI's characteristics are obtained by a method that defines a specific interaction among five metallurgical fundaments: chemical analysis; oxidation of the liquid metal; nucleation of the liquid metal; eutectic solidification and eutectoidic solidification.
摘要:
An austenitic cast iron according to the present invention is characterized in that: it comprises: basic elements comprising C, Si, Cr, Ni, Mn and Cu; and the balance comprising Fe, inevitable impurities and/or a trace-amount modifier element, which is effective in improving characteristic, in a trace amount; and it is an austenitic cast iron being a cast iron that is structured by a base comprising an Fe alloy in which an austenite phase makes a major phase in ordinary-temperature region; wherein said basic elements fall within compositional ranges that satisfy the following conditions when the entirety of said cast iron is taken as 100% by mass (hereinafter being simply expressed as “%”): C: from 2.0 to 3.0%; Si: from 4.0 to 5.4%; Cr: from 0.8 to 2.0%; Mn: from 3.9 to 5.6%; Ni: from 17 to 22%; and Cu: from 0.9 to 1.6%. It is an austenitic cast iron whose Ni content is less relatively, and is excellent in terms of oxidation resistance under high temperature and austenite-phase stability in intermediate-temperature region.
摘要:
The object of the present application is to define an alloy, which presents the mechanical and physical properties of the gray iron alloy, with a wide interface range of the CGI's tensile strength. This new alloy, flake graphite based, is a High Performance Iron (HPI) alloy. Therefore, besides its high tensile strength, the HPI alloy presents excellent machinability, damping vibration, thermal conductivity, low shrink tendency and good microstructure stability (compatible with gray iron alloys).Said HPI's characteristics are obtained by a specific interaction among five metallurgical fundaments: chemical analysis; oxidation of the liquid metal; nucleation of the liquid metal; eutectic solidification and eutectoidic solidification.
摘要:
A scroll compressor includes a scroll member having a base and a generally spiral wrap that extends from the base to define a portion of a compression chamber. The scroll member is made of a cast iron material comprising a microstructure having graphite nodules.
摘要:
A device for processing iron alloys in a vessel is described. A reaction chamber for receiving at least one alloying material is arranged in the bottom of the vessel and a sprue of refractory material is arranged concentrically above the reaction chamber to form a gap between the lower end of the sprue and the upper delimitation of the reaction chamber.
摘要:
A strainer for molten metal. The strainer comprises a well and a multiplicity of passages. Each passage comprises a first cavity a second cavity with a smaller equivalent diameter than the first cavity. A neck is between the first cavity and second cavity. An inoculation pellet is received in the well.
摘要:
A method for continuously providing pretreated molten iron for casting objects which solidify as compacted cast iron, in which inoculating agents are added immediately prior to casting, in exact quantities. In practicing the method, the ability of the fully treated cast iron to crystallize is measured and the result of this measurement is used for feedback control of the supply of inoculating agent, this supply being effected at the last possible stage of the treatment process, so as to optimize the amount of inoculating agent introduced to the system. Since the inoculating a gent will normally include FeSi, it will also fed back and used to increase or reduce the addition of agents for adjusting the carbon and/or silicon contents of the iron as necessary.
摘要:
Spheroidal graphite cast iron containing 0.016-0.030 weight % of S, in which the number of spheroidal graphite particles having a diameter of 2 .mu.m or more is such that it is 1700/mm.sup.2 or more when an as-cast iron portion measured has a thickness of 3 mm. This cast iron is produced by:(a) preparing an Fe alloy melt consisting essentially of, by weight, 3.0-4.0% of C, 1.8-5.0% of Si, 1.0% or less of Mn, 0.20% or less of P, 0.005-0.015% of S and balance Fe and inevitable impurities;(b) adding 0.020-0.050% of a lanthanide rare earth metal to the Fe alloy melt before or simultaneously with adding a spheroidizing agent;(c) subjecting the melt to a spheroidizing treatment by using the spheroidizing agent; and(d) adding a sulfur-containing material to the melt so that the amount of S is adjusted to 0.016-0.030 weight %, and that the amount of the lanthanide rare earth metal is adjusted to 0.010-0.040 weight %.
摘要翻译:含0.016-0.030重量%的S的球状石墨铸铁,其中直径为2μm或更大的球状石墨颗粒的数量使得当测量的铸铁部分具有1700 / mm 2或更大时 厚度3毫米。 这种铸铁是通过以下方法制备的:(a)制备基本上由以下组成的Fe合金熔体:以重量计,3.0-4.0%的C,1.8-5.0%的Si,1.0%以下的Mn,0.20%以下的P, 0.005-0.015%的S和余量的Fe和不可避免的杂质; (b)在加入球化剂之前或同时向Fe合金熔体中加入0.020-0.050%的镧系稀土金属; (c)使用球化剂对熔体进行球化处理; 和(d)向熔体中加入含硫材料,使S的量调节至0.016-0.030重量%,并将稀土类稀土金属的量调节至0.010-0.040重量%。