Abstract:
Hydrogen propelled fuel cell vehicle system designs that reduce the relative cost of releasing hydrogen from hydrogen storage alloys by providing and/or utilizing secondary sources of heat to supply the heat of desorption of stored hydrogen. The secondary source can include combusting conventional secondary (non-hydrogen) fuels. The fuel supply system uses fundamentally new magnesium-based hydrogen storage alloy materials which for the first time make it feasible and practical to use solid state storage and delivery of hydrogen to power fuel cell vehicles. These exceptional alloys have remarkable hydrogen storage capacity of over 7 weight % coupled with extraordinary absorption kinetics such that the alloy powder absorbs 80% of its total capacity within 1.5 minutes at 300° C. and a cycle life of at least 2000 cycles without loss of capacity or kinetics.
Abstract:
Magnesium alloys containing, by mass percent, Al: 10.0 to 13.0%, Si: 0.3 to 1.5%, Mn: 0.1 to 1.0%, and, if desired, Zn: less than 0.8%, the rest being Mg and unavoidable impurities. Neither cracking by the casting is invited nor the mechanical property is spoiled, and the fluidity can be notably improved, and it is possible to make products small in thickness and light in weight.
Abstract:
A process for producing a refined magnesium material which is flame retardant by adding an alkaline earth metal. In the process, the dross in a thin film is formed on the surface of the molten magnesium material by contacting it with a dross-formable atmosphere gas while the molten magnesium material is subjected to a vertical vortex flow. The dross encloses the impurity floating on the surface of molten magnesium material through the vortex flow in a vertical direction. The resultant dross is accumulated at the corner of the crucible to prevent the re-diffusion of the impurity. The continuous application of the vortex flow against the molten magnesium material causes the thin film of dross to be continuously formed on the molten magnesium material and adhered thereto so as to enclose the impurity each time it is formed. Accordingly, the molten magnesium material is improved in cleanliness or refined. Solidifying the molten magnesium material by cooling serves to provide an ingot for casting which is extremely reduced in the porosity peculiar to the addition of an alkaline earth metal. Casting such the ingot serves to provide a product having good qualities.
Abstract:
Hydrogen propelled vehicles and fundamentally new magnesium-based hydrogen storage alloy materials which for the first time make it feasible and practical to use solid state storage and delivery of hydrogen to power internal combustion engine or fuel cell vehicles. These exceptional alloys have remarkable hydrogen storage capacity of well over 6 weight % coupled with extraordinary absorption kinetics such that the alloy powder absorbs 80% of its total capacity within 10 minutes at 300° C. and a cycle life of at least 500 cycles without loss of capacity or kinetics.
Abstract:
A hydrogen-absorbing alloy which is excellent in stability in an aqueous solution and in mechanical pulverizability is disclosed. This hydrogen-absorbing alloy contains an alloy represented by the following general formula (I): Mg2M1y (I) wherein M1 is at least one element selected (excluding Mg, elements which are capable of causing an exothermic reaction with hydrogen, Al and B) from elements which are incapable of causing an exothermic reaction with hydrogen; and y is defined as 1
Abstract:
A magnesium alloy material includes magnesium; more than 1 wt. % manganese; and at least one sp-metal selected from the group consisting of zinc, cadmium, mercury, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, and bismuth, wherein the manganese and the at least one sp-metal together are a maximum of 5 wt. % of the alloy material. The magnesium materials are resistant to corrosion and are especially useful in articles exposed to aqueous electrolytes during use or production.
Abstract:
An object of the present invention is to provide a high strength Mg based alloy and a Mg based casting alloy having a good fluidity and a good mechanical property, and a molded article using the alloy. A high strength Mg based alloy, which contains, by weight, 12 to 20% of Al, 0.1 to 10% of Zn; 0.1 to 15% of Sn; and 0.05 to 1.5% of Mn.
Abstract:
A method of grain refining cast magnesium alloy includes adding to a magnesium alloy melt containing aluminum and manganese, pure carbon powder, or a carbon source in combination with niobium pentoxide or vanadium pentoxide.
Abstract:
A magnesium alloy of the present invention includes magnesium as a main component, boron of 0.0005 weight % or more, manganese of 0.03 to 1 weight %, and substantially no zirconium or titanium. This magnesium alloy may further include aluminum of 1 to 30 weight % and/or zinc of 0.1 to 20 weight %. Because of appropriate amounts of boron and manganese contained in the magnesium alloy, the grain of the mangnesium alloy is refined.
Abstract:
A magnesium based hydrogen storage alloy powder which is useful as a hydrogen supply material for powering internal combustion engine or fuel cell vehicles. The alloy contains greater than about 85 atomic percent magnesium, about 2-8 atomic percent nickel, about 0.5-5 atomic percent aluminum and about 2-7 atomic percent rare earth metals or mixtures of rare earth metals. The rare earth elements may be Misch metal and may predominantly contain Ce and/or La. The alloy may also contain about 0.5-5 atomic percent silicon. The alloys can be modified to store more than 4 wt. % hydrogen, with a reduced hydride bond strength (i.e. about 64 kJ/mole) which allows for economic recovery of the stored hydrogen. Also, they have a plateau pressure about two times greater than pure Mg and comparable bond energies and plateau pressures to Mg2Ni alloys, while reducing the amount of incorporated nickel by 25-30 atomic %. Also, the storage capacity of the alloy is significantly greater than the 3.6 wt. % of Mg2Ni material.