摘要:
The present invention relates to pharmaceutically acceptable salts of conjugates comprising a chemotherapeutic drug and an amino acid or a derivative thereof, which are readily taken up by a target cell and reduce side effects induced by the chemotherapeutic drug. In particular, the present invention relates to pharmaceutically acceptable salts of conjugates comprising cytidine analog drugs and aspartic or glutamic acid and analogs thereof, pharmaceutical compositions comprising these conjugates and use thereof for the treatment of cancer or a pre-cancer condition or disorder.
摘要:
This application discloses phosphoramidate and phosphonoamidate prodrugs of alcohol-based therapeutic agents, such as nucleosides, nucleotides, acyclonucleosides, C-nucleosides, and C-nucleotides, and use of these prodrugs for treatment of diseases or disorders, including infectious diseases and cancers. This application also discloses a general method for enhancing bioavailability and/or liver-targeting property of alcohol drugs through converting the alcohol drugs to phosphoramidate or phosphonoamidate prodrugs, and methods of preparation of these prodrugs.
摘要:
A radiolabeled nucleoside analogue is provided, which includes radioactive iodine 123I/131I, and a nucleoside analogue selected from a group consisting of cytidine, thymidine, uridine, and a derivative thereof. A method for preparing the radiolabeled nucleoside analogue, and a use thereof are further provided. The nucleoside analogue, prepared through the preparation method with a short synthesis time and a high radiochemical yield, has a long in vivo physiological half life and a high stability in serum, and, as a radiopharmaceutical composition, is useful in development of tumor proliferation diagnosis or therapy prognosis evaluation, and further assists in observation of long-time in vivo metabolism of a drug.
摘要:
Processes for the preparation of racemic and optically active nucleoside analogs of formula (A) are described. These compounds are useful as anti-infective agents, antisense therapeutic agents and hybridization assay probes.
摘要:
A novel method has been found to produce 2,2′-anhydro-1-(β-L-arabinofuranosyl)thymine as a novel useful intermediate compound. A novel method has been further found to produce thymidine from 2,2′-anhydro-1-(β-L-arabinofuranosyl)thymine. A novel method has been further found to L-2′-deoxyribose derivatives as a useful synthetic intermediate through L-2,2′-anhydro-5,6-dihydrocyclouridine derivative. According to these methods, synthesis of various L-nucleic acid derivatives, synthesis of which has been difficult till now.
摘要:
The present invention provides nucleoside compounds and certain derivatives thereof which are inhibitors of RNA-dependent RNA viral polymerase. These compounds are inhibitors of RNA-dependent RNA viral replication and are useful for the treatment of RNA-dependent RNA viral infection. They are particularly useful as inhibitors of hepatitis C virus (HCV) NS5B polymerase, as inhibitors of HCV replication, and/or for the treatment of hepatitis C infection. The invention also describes pharmaceutical compositions containing such nucleoside compounds alone or in combination with other agents active against RNA-dependent RNA viral infection, in particular HCV infection. Also disclosed are methods of inhibiting RNA-dependent RNA polymerase, inhibiting RNA-dependent RNA viral replication, and/or treating RNA-dependent RNA viral infection with the nucleoside compounds of the present invention.
摘要:
Disclosed and claimed are prodrugs activated by catalytic proteins, such as enzymes and catalytic antibodies. The invention comprehends such prodrugs, as well as haptens, to elicit catalytic antibodies to activate the prodrugs. The prodrugs are useful as cytotoxic chemotherapeutic agents; e.g., as antitumor agents.
摘要:
The present invention is directed to a method of treating hepatitis B viral infections in mammals comprising the administration of .beta.-L-5-fluoro-2',3'-dideoxycytidine and pharmaceutically acceptable derivatives thereof.
摘要:
Dehydrated liposomes are prepared by drying liposome preparations under reduced pressure in the presence of one or more protective sugars, e.g., the disaccharides trehalose and sucrose. Preferably, the protective sugars are present at both the inside and outside surfaces of the liposome membranes. Freezing of the liposome preparation prior to dehydration is optional. Alternatively, the protective sugar can be omitted if: (1) the liposomes are of the type which have multiple lipid layers; (2) the dehydration is done without prior freezing; and (3) the dehydration is performed to an end point which results in sufficient water being left in the preparation (e.g., at least 12 moles water/mole lipid) so that the integrity of a substantial portion of the multiple lipid layers is retained upon rehydration. Concentration gradients capable of generating transmembrane potentials can be created across the liposome membranes either before or after dehydration, and the transmembrane potentials resulting from these gradients can be used to load charged materials, e.g., drugs, into the liposomes.