Abstract:
A process for preparing perfluoropolyethers of formula T-O—(RF)z-T′ (I) wherein: T, T' are end groups, z=0 or 1; RF is a perfluoro(poly)oxyalkylene chain containing one or more fluorooxyalkylene repeating units selected from the group consisting of (CF2O), —(CF(CF3)O)—, —(CF2CF2O)—, —(CF2CF(CF3)O)—, —(CF(CF3)CF2O)—, —(CF2CF2CF2O)—, —(CF2CF2CF2CF2O)—, and —(CF2)j—CFZ—O— wherein j is an integer from 0 to 3, and Z is a fluorooxyalkylene chain comprising from 1 to 20 repeating units selected from the above reported fluorooxyalkylene units; comprising the reduction of peroxidic perfluoropolyethers comprising one or more of the above defined repeating units by using gaseous hydrogen in the presence of a catalyst comprising one or more metals of the VIII group supported on graphitic materials.
Abstract:
The invention relates to the use of monoliths as particle filters for limiting the deactivation of catalysts during catalytic reactions in multi-tubular reactors. The invention is particularly well-suited for catalytic oxidation reactions in the gaseous phase. The invention also relates to multi-tubular reactors including monoliths as particle filters.
Abstract:
The use of fuel cells to produce electricity are known as an environmentally clean and reliable source of energy, and show promise as an automotive power source if the polymer electrolyte membrane fuel cell can be made less expensive, more durable, reduce or eliminate humidification of the reactive gases, and operate at temperatures encountered during automotive operating conditions. The use of an electro-catalyst formed from heteropoly acids immobilized by a conductive material, such as carbon or platinum black, and stabilizing a metallic black with the immobilized conductive material addressed these automotive fuel cell needs. Coating the fuel cell electrode, polymer electrolyte assembly with a nano-particle catalyst derived from a heteropoly acid provided anodic carbon monoxide tolerance at anodic overpotentials and an active cathodic oxygen reduction. The heteropoly acids can also function as supercapacitor electrode films.
Abstract:
The present invention relates to methods of initiating a reaction represented by scheme (1), wherein Q is optionally substituted aryl or optionally substituted heteroaryl; X is halogen or a sulphonate; P is an organic radical; R is hydrogen or an organic radical; wherein the catalyst comprises copper and a ligand; comprising providing the compound of formula III in liquid form prior to contacting the compound of formula III with the catalyst.
Abstract:
A benzaldehyde acetal compound of formula (3): (wherein Q represents a hydrogen atom or a halogen atom, Ar represents a phenyl group optionally substituted with at least one selected from the group consisting of alkyl groups having 1 to 4 carbon atoms and halogen atoms, and R represents an alkyl group having 1 to 4 carbon atoms).
Abstract:
Provided is a method for preparing (E3,Z5)-3,5-alkadienyl acetate and (E3,Z5)-3,5-dodecadienyl acetate which is a sex pheromone of Brazilian apple leafminer. Specifically, provided is a method for preparing (E3,Z5)-3,5-alkadienyl acetate, comprising steps of hydrolyzing 5,5-diethoxy-(Z3)-3-pentenyl methoxymethyl ether in the presence of an acid to obtain 4-formyl-(E3)-butenyl methoxymethyl ether; reacting the 4-formyl-(E3)-butenyl methoxymethyl ether with alkylidene triphenylphosphorane in accordance with the Wittig reaction to obtain (E3,Z5)-3,5-alkadienyl methoxymethyl ether; and obtaining (E3,Z5)-3,5-alkadienyl acetate using the (E3,Z5)-3,5-alkadienyl methoxymethyl ether as a starting substance.
Abstract:
This invention describes a method for preparing polymethoxymethylal. By this method, polymethoxymethylal is prepared by a catalytic reaction using methanol and trioxymethylene as reactants and using an ionic liquid as catalyst under a relatively moderate reaction condition. The catalyst of this invention has a high catalytic activity and a high conversion; the reaction process is simple, easy to be operated and has a strong controllability; the distribution of the products after reaction is superior and the utilization ratio of the raw materials is high.
Abstract:
An IR spectroscopic technique provides methods for measuring the irritation potential of a formulation and to assess the ability of molecules to enhance the permeability of substances into and through skin using samples comprising stratum corneum. Molecules are screened for their performance as chemical penetration enhancers using a unique in silico procedure that may be applied iteratively in an attempt to generate molecules showing successively higher performance. Both the irritation potential and the ability of the molecule to enhance penetration are considered in the in silico approach. The invention provides specific molecules that may be used in topical or transdermal formulations to improve the delivery of actives. The structures of compounds of the invention include: Formulas (I), (II), (III), (IV), (V), (IV) and analogs thereof.
Abstract:
The invention provides a process for preparing polyetherols of polyhydric alcohols by reacting an alkylene oxide with the appropriate polyhydric alcohol in the presence of a base and in the presence or absence of a solvent, wherein the polyhydric alcohol used has a formaldehyde acetal content of less than 500 ppm.
Abstract:
A thermoplastic molding composition comprising polycarbonate and at least one aromatic formal is disclosed. The formal conforms to The composition that is characterized by its reduced water uptake, is useful especially for the production of optical data carriers, such as compact discs.