Abstract:
A method of treating a subterranean formation by contacting the formation with the following: (a) an ammonium compound; (b) an oxidizing agent selected from a perchlorate or a nitrite or combinations thereof; and (c) one or more acids, at least one of which is a bisulfate salt.
Abstract:
A gas generant composition for an automotive inflatable restraint system includes one or more: fuels, such as guanidine nitrate; oxidizers, such as basic copper nitrate; and an alkaline earth zirconium oxide. The gas generant composition is substantially free of potassium perchlorate. The alkaline earth zirconium oxide may be barium zirconate (BaZrO3), calcium zirconate (CaZrO3), and/or strontium zirconate (SrZrO3). The alkaline earth zirconium oxide may be present at ≥about 0.1% by mass to ≤about 6% by mass of the gas generant composition. Such gas generants may be cool burning (e.g., a maximum flame temperature at combustion (Tc) of ≤about 1700K (1,427° C.)), have a linear burn rate of ≥about 20 mm per second at a pressure of about 21 MPa and a linear burn rate pressure exponent (n) of ≤about 0.35. Method of making such gas generants are also provided.
Abstract:
The present invention relates to a water-based non-sensitized matrix or explosive suspension which itself has a rheological behavior such that it allows mechanically loading upward boreholes. This suspension behaves like a viscous liquid when it is forced to flow due to the action of a loading pump, and, however, has the characteristics of a soft solid when it is on standby once inside the borehole. The composition essentially consists of an aqueous solution of oxidizing salts and optionally water-soluble fuels and/or sensitizers, and one or more water-soluble polymers conferring the desired rheological characteristics. Particles of oxidizing salts with a grain size such that they enhance the rheological behavior characteristic of the suspension are dispersed in this aqueous solution.
Abstract:
A composite pyrotechnic product containing energetic charges in a plasticized binder includes a cured energetic polymer and at least one energetic plasticizer, wherein: the cured energetic polymer consists of a glycidyl azide polymer (GAP) having a number average molecular weight (Mn) lying in the range 700 g/mol to 3000 g/mol and cured via its hydroxyl terminal functions with at least one curing agent of polyisocyanate type; and the energetic charges present at a content in the range 50% to 70% by weight consisting, for at least 95% of their weight, of large crystals of ammonium dinitramide (ADN) and of small crystals of hexogen (RDX): the large crystals of ammonium dinitramide (ADN) being present at a content in the range 8% to 65% by weight; and the small crystals of hexogen (RDX) being present at a content in the range 5% to 55% by weight.
Abstract:
Provided is a gas generating composition that maintains stable ignition performance for a long period.A gas generating composition includes: a gas generating agent including (a) fuel selected from a triazine compound and a guanidine compound, (b) an oxidizing agent including a combination of (b-1) basic metal nitrate and (b-2) basic metal carbonate, and (c) a binder; and (d) an absorbent. The gas generating agent and the absorbent may not be integrally molded or may be integrally molded.
Abstract:
An inflator 10 is provided whereby the interstitial cavities found within the inflator 10 are packed with one or more decomposition additives 26 that decompose in the presence of heat. As such, the decomposition additives 26 fluidly and/or conductively communicate with the hot gases generated upon activation of the inflator 10. As the decomposition additive 26 decomposes, heat may be mitigated while resultant gaseous decomposition products are liberated.
Abstract:
A liquid electrically initiated and controlled composition comprising an oxidizer, soluble fuel additive(s), and other optional additives to enhance the chemical or ballistic properties, or a combination thereof is disclosed. The liquid composition further comprises stabilizers to enhance thermal stability, sequestrants to minimize deleterious effects of transition metal contaminants, and combustion enhancers maximizing efficiency. Buffers and heavy metal sequestering or complexing agents may be used in combination to achieve the highest degree of thermal stability. Additional ionic co-oxidizers may be added to the liquid composition to stabilize the liquid oxidizer and further depress freezing point. The liquid phase of matter allows flow via pipes or tubes from tanks, reservoirs, or other containers, through metering valves, followed by ignition or combustion modulation when stimulated by electrodes, statically or dynamically.
Abstract:
The present invention provides a chlorine-containing pyrotechnic composition which is substantially free of per-chlorate which composition comprises a nitrocellulose which is derived from a fibrous nitrocellulose starting material that has at least partially been dissolved during the process of preparing the pyrotechnic composition, and a colorant. The invention further provides a firework article comprising said pyrotechnic composition, and a method for preparing the same.
Abstract:
An explosive composition is provided comprising an explosive agent, a solid fuel and a polymeric adherent wherein the explosive agent, solid fuel and polymeric adherent are dispersed throughout the composition.