摘要:
A rapid, centrifugal method to prepare polysilazanes and separate them from their ammonium halide-anhydrous, liquid ammonia by-product is coupled with several, alternative methods to recover ammonium halide and anhydrous, liquid ammonia from the by-product. Some reactive modes of by-product recovery lead to sodium chloride as the sole waste product of, optionally, to ammonia borane as a secondary product of the process.
摘要:
Disclosed herein are chlorodisazanes; silicon-heteroatom compounds synthesized therefrom; devices containing the silicon-heteroatom compounds; methods of making the chlorodisilazanes, the silicon-heteroatom compounds, and the devices; and uses of the chlorodisilazanes, silicon-heteroatom compounds, and devices.
摘要:
Methods for producing halosilazane comprise halogenating a hydrosilazane with a halogenating agent to produce the halosilazane, the halosilazane having a formula (SiHa(NR2)bXc)(n+2)Nn(SiH(2−d)Xd)(n−1), wherein each a, b, c is independently 0 to 3; a+b+c=3; d is 0 to 2 and n≥1; wherein X is selected from a halogen atom selected from F, Cl, Br or I; each R is selected from H, a C1-C6 linear or branched, saturated or unsaturated hydrocarbyl group, or a silyl group [SiR′3]; further wherein each R′ of the [SiR′3] is independently selected from H, a halogen atom selected from F, Cl, Br or I, a C1-C4 saturated or unsaturated hydrocarbyl group, a C1-C4 saturated or unsaturated alkoxy group, or an amino group [—NR1R2] with each R1 and R2 being further selected from H or a C1-C6 linear or branched, saturated or unsaturated hydrocarbyl group, provided that when c=0, d≠0; or d=0, c≠0.
摘要:
Described herein is an apparatus comprising a plurality of silicon-containing layers wherein the silicon-containing layers are selected from a silicon oxide and a silicon nitride layer or film. Also described herein are methods for forming the apparatus to be used, for example, as 3D vertical NAND flash memory stacks. In one particular aspect or the apparatus, the silicon oxide layer comprises slightly compressive stress and good thermal stability. In this or other aspects of the apparatus, the silicon nitride layer comprises slightly tensile stress and less than 300 MPa stress change after up to about 800° C. thermal treatment. In this or other aspects of the apparatus, the silicon nitride layer etches much faster than the silicon oxide layer in hot H3PO4, showing good etch selectivity.
摘要:
Mono-substituted TSA precursor Si-containing film forming compositions are disclosed. The precursors have the formula: (SiH3)2N—SiH2—X, wherein X is selected from a halogen atom; an isocyanato group; an amino group; an N-containing C4-C10 saturated or unsaturated heterocycle; or an alkoxy group. Methods for forming the Si-containing film using the disclosed mono-substituted TSA precursor are also disclosed.
摘要:
An economical method for recovering phosphate or phosphate and nitrogen from liquid streams. A liquid containing phosphate is introduced into a culture of autotrophic microorganisms in the presence of natural or artificial light, thereby producing a liquid effluent with elevated pH and reduced alkalinity. The alkalinity is reduced through the consumption of bicarbonate/carbonate by the autotrophic microorganisms. The effluent is then chemically treated with low-cost chemicals to provide Ca++ or Mg++ ions necessary to form a phosphate precipitate such as calcium phosphate or magnesium-ammonium-phosphate (MAP). The autotrophic microorganisms can be cultivated in ponds, lagoons, or photobioreactors. The pH of the culture is adjustable within a preferred range of 7.5 to 10.5 by adjusting the photobioreactor operation. The process includes an economical flotation separator for solid, liquid, gas separation and a means of concentrating ammonia nitrogen that may also be removed during the process of phosphate reclamation.
摘要:
The present invention relates to a specific process for producing trisilylamine from monochlorosilane and ammonia in the liquid phase. The invention further relates to a plant in which such a process can be carried out with advantage.
摘要:
[Problem] To provide a perhydropolysilazane making it possible to form a siliceous film with minimal defects, and a curing composition comprising the perhydropolysilazane.[Means for Solution] The present invention provides a perhydropolysilazane having a weight-average molecular weight of 5,000 to 17,000, characterized in that when 1H-NMR of a 17% by weight solution of said perhydropolysilazane dissolved in xylol is measured, the ratio of the amount of SiH1,2 based on the aromatic ring hydrogen content of the xylol is 0.235 or less and the ratio of the amount of NH based on the aromatic ring hydrogen content of the xylol is 0.055 or less, and a curing composition comprising the perhydropolysilazane. The present invention also provides a method for forming a siliceous film, comprising coating the curing composition on a substrate and heating.
摘要:
The present invention is directed to a condensed phase batch process for synthesis of trisilylamine (TSA). An improved synthesis process that incorporates a solvent to help promote a condensed-phase reaction between ammonia gas (or liquid) and liquified monochlorosilane (MCS) in good yields is described. This process facilitates the removal of the byproduct waste with little to no reactor down time, substantial reduction of down-stream solids contamination and high-purity product from first-pass distillation.
摘要:
The method described herein provides a method for preparing trisilylamine. In one aspect, the method comprises: providing a reaction mixture of trisilylamine and monochlorosilane into a reactor wherein the reaction mixture is at a temperature and pressure sufficient to provide trisilylamine in a liquid phase wherein the reaction mixture is substantially free of an added solvent; contacting the reaction mixture with ammonia to provide a crude mixture comprising trisilylamine and an ammonium chloride solid wherein monochlorosilane is in stoichiometric excess in relation to ammonia; purifiying the crude mixture to provide trisilylamine wherein the trisilyamine is produced at purity level of 90% or greater; and optionally removing the ammonium chloride solid from the reactor.