摘要:
An oil-water emulsion breakup system. In one embodiment, the system includes an oil-water mixture inlet line configured to receive an oil and water liquid mixture, which may be stabilized by hydrophobic nanoparticles, surfactants of low HLB value, or both. A water injection inlet in communication with the oil-water mixture inlet is configured to direct water into the oil-water mixture inlet. A water sensor is in communication with the oil-water mixture inlet to sense percentage of water in the mixture. A water injection valve in the water injection inlet is in communication with the water sensor. A liquid-liquid separator has an inlet configured to receive a combination of the oil and water mixture and the water, with the separator separating liquid into an oil phase and a water phase. An upper leg in communication with the liquid-liquid separator receives oil separated from the separator. A lower leg in communication with the liquid-liquid separator receives water separated in the liquid-liquid separator.
摘要:
A cyclonic separator is taught for separation of a mixed liquid phase/gas phase process stream. The cyclonic separator comprises an outer shell, at least two cyclonic chambers located within the outer shell, each cyclonic chamber having an upper end and a lower end; a single, common tangential inlet passing tangentially through the outer shell and into each of the at least two cyclonic chambers, proximal the upper ends thereof; a gas outlet tube located at least partially within each cyclonic chamber, extending axially from a lower gas outlet end located below the tangential inlet, to an upper gas outlet end extending out of each of the at least two cyclonic chambers, said upper gas outlet ends being in fluid communication with a common gas chamber located above the outer shell; and a circumferential recycle opening formed around and through a thickness each gas outlet tube, in a portion of each gas outlet tube located axially between the upper end of cyclonic chambers and the common gas chamber, said recycle opening thus being in fluid communication with an inside cavity of the outer shell.
摘要:
One illustrative cyclone separator disclosed herein includes an outer body, an inner body positioned at least partially within the outer body, an internal flow path within the inner body, the internal flow path having a fluid entrance and a fluid outlet, a first fluid flow channel between the inner body and the outer body, and a re-entrant fluid opening that extends through the outer body and is in fluid communication with the fluid flow channel, wherein the re-entrant fluid opening is positioned at a location upstream of the fluid entrance of the internal flow path in the inner body.
摘要:
One illustrative cyclone separator disclosed herein includes an outer body, an inner body positioned at least partially within the outer body, an internal flow path within the inner body, the internal flow path having a fluid entrance and a fluid outlet, a first fluid flow channel between the inner body and the outer body, and a re-entrant fluid opening that extends through the outer body and is in fluid communication with the fluid flow channel, wherein the re-entrant fluid opening is positioned at a location upstream of the fluid entrance of the internal flow path in the inner body.
摘要:
A system for treatment of contaminated sediments and soils using free radical chemical reaction and phase separation processes comprises a sediment or soil inlet system, a slurry tank, wherein the inlet system feeds the slurry tank, a water make-up tank, an optional acid storage tank, wherein the water make-up tank and the acid storage tank are connected to the slurry tank, a reaction vessel, wherein the slurry tank is connected to the reaction vessel, an oxidant agent storage tank, an optional catalyst storage tank, wherein the oxidant agent storage tank and the catalyst storage tank are connected to the reaction vessel, a first particle separator, wherein the reaction vessel is connected to the first particle separator, and an oil/water separator, wherein the first particle separator is connected to the oil/water separator is disclosed. A method for treatment of contaminated sediments and soils is also disclosed.
摘要:
For separating an oil and water mixture, the mixture is applied to the inlet of a cyclone separator so that the oil emerges from an overflow outlet and the water from an underflow outlet. Sensors measure the purity of the separated water and oil components and under control of a suitable control device, additions are made to the inlet liquid of quantities of oil or water to alter the ratio of oil and water quantities in the inlet mixture in a fashion tending to maintain separation efficiency. The oil and water to be admixed are taken from reservoirs.
摘要:
A purification unit for separation of solid particles from gases comprises at least one group of a plurality of flow cylinders arranged in a common chamber. Each flow cylinder has a fixed rotary head for setting incoming gas in rotary motion, an outlet diffuser for purified gas projecting concentrically into the outlet end of each flow cylinder and forming together with the surrounding cylinder an annular gap with its inlet portion. Through this gap, separated particles stream out to the chamber. In order to obtain at least the same purifying effect with several dust separators connected in parallel and each including a flow cylinder with a fixed rotary head and outlet diffusor as with one single dust separator, the common dust collecting chamber is connected by way of at least one suction line to a steplessly adjustable blower in order to maintain a negative pressure in the chamber optimizing the purification.
摘要:
A separator comprises a vessel having an outer wall (2) and an end wall (3). A body (14) adjacent the end wall (3) defines with the end wall (3) an annular opening (15). In use, a mixture of, for example water and solid material, is introduced into the vessel through a first inlet (4). A circulating motion takes place in the vessel and the solid material falls to the end wall (3) and is removed through the opening (15) to an outlet (6) while clean water flows from the top of the vessel through an outlet (8). In order to increase the energy in the lower region of the vessel so as to assist removal of the solid material, water from the outlet (8) is passed through a pump (P) and reintroduced as energizing fluid to the vessel through a recirculating port (44). Energizing fluid may be taken from sources other than the outlet (8). Various alternative forms of separator are disclosed.
摘要:
A liquid separator is disclosed for separating a liquid mixture into first and second liquids of different densities. The liquid separator includes a substantially conical chamber having a closed upper portion with a liquid mixture inlet therein. A first liquid collecting mechanism is provided in a lower portion of the conical chamber for collecting and removing a first separated liquid, and a second liquid collecting device surrounds the opening in the lower portion of the conical chamber for collecting and removing a second separated liquid. A return conduit mechanism is provided for returning a portion of the second separated liquid tangentially into an upper portion of the conical chamber to act as a drive fluid to cause the centrally introduced liquid mixture to rotate for effective and efficient separation.
摘要:
AN IMPROVED SYSTEM FOR REDUCING DUST EMISSION TO THE ATMOSPHERE FROM A FLUIDIZED BED REACTOR. THE SYSTEM EMPLOYS CYCLONE SEPARATORS ONE OF WHICH, IN ADDITION TO RETURNING SEPARATED PARTICLES TO THE BED THROUGH A DIP-LEG, IS PROVIDED WITH MEANS BYPASSING A SMALL PART OF THE GAS STREAM TO A FILTERING SYSTEM. THE SYSTEM REDUCES DUST EMISSION BY SUBJECTING PART OF THE GAS STREAM CARRYING NON-SEPARABLE PARTICLES AS AN UNDERFLOW STREAM TO A FILTERING OPERATION WHILE RETURNING SEPERATED FINES TO THE FLUID BED.