Abstract:
The present invention concerns a modular air supply system for a vehicle, normally a truck or bus. The system comprises a base unit forming an interface to different modules of the air supply system. Such further modules may include an air treatment module, an electronic drier unit and air distribution module.
Abstract:
The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
Abstract:
An apparatus and process for abating at least one acid or hydride gas component or by-product thereof, from an effluent stream deriving from a semiconductor manufacturing process, comprising, a first sorbent bed material having a high capacity sorbent affinity for the acid or hydride gas component, a second and discreet sorbent bed material having a high capture rate sorbent affinity for the same gas component, and a flow path joining the process in gas flow communication with the sorbent bed materials such that effluent is flowed through the sorbent beds, to reduce the acid or hydride gas component. The first sorbent bed material preferably comprises basic copper carbonate and the second sorbent bed preferably comprises at least one of, CuO, AgO, CoO, Co3O4, ZnO, MnO2 and mixtures thereof.
Abstract translation:一种用于从源自半导体制造工艺的流出物流中减轻至少一种酸或氢气体组分或其副产物的装置和方法,包括:具有对酸或氢化物气体具有高容量吸附剂亲和性的第一吸附剂床材料 组分,具有对相同气体组分的高捕获率吸附剂亲和力的第二和离散的吸附剂床材料,以及将流程连接到与吸附剂床材料气流连通的流路,使得流出物流过吸附剂床,以减少 酸或氢气组分。 第一吸附剂床材料优选包含碱式碳酸铜,第二吸附剂床优选包含CuO,AgO,CoO,Co 3 O 4,ZnO,MnO 2及其混合物中的至少一种。
Abstract:
A pressure equalization apparatus for decreasing or eliminating the pressure differential between the internal pressure within a sealed system and the external ambient air pressure while concurrently sustaining a dry atmosphere inside the enclosure. The apparatus includes a variable volume chamber coupled in fluid communication with the sealed system and adapted to change its volume as in relation to the pressurization of the sealed system. Gas flowing between the sealed system and the variable volume chamber, as the pressurization changes, is exposed to an adsorbent operative for dehumidifying the exchanged gas.
Abstract:
Apparatus and method for utilizing recirculated exhaust gas in semiconductor manufacturing system, in a manner substantially reducing the effluent burden on the exhaust treatment system and infrastructure of the semiconductor process facility.
Abstract:
A method and apparatus for abatement of effluent from a CVD process using a source reagent having a metal organic loosely bound to a organic or organometallic molecule such that upon exposure to heat such bond is readily cleavable, e.g., copper deposition process involving the formation of films on a substrate by metalorganic chemical vapor deposition (CVD) utilizing a precursor composition for such film formation. The abatement process in specific embodiments facilitates high efficiency abatement of effluents from copper deposition processes utilizing Cu(hfac)TMVS as a copper source reagent.
Abstract:
In a process for separating propylene from a mixture comprising propylene and propane, the mixture is passed through a bed of an adsorbent comprising a porous crystalline material having (i) a diffusion time constant for propylene of at least 0.1 sec−1, when measured at a temperature of 373° K and a propylene partial pressure of 8 kPa, and (ii) a diffusion time constant for propane, when measured at a temperature of 373° K and a propane partial pressure of 8 kPa, less than 0.02 of said diffusion time constant for propylene. The bed preferentially adsorbs propylene from the mixture. The adsorbed propylene is then desorbed from the bed either by lowering the pressure or raising the temperature of the bed.
Abstract:
An adsorbent, method, and apparatus involving same for the removal of moisture from a fluoride-containing fluid such as gaseous nitrogen trifluoride are disclosed herein. In certain preferred embodiments, the adsorbent of the present invention comprises an organic support having a porosity of 30% or greater and a pore size of 2 &mgr;m or less; and at least one metal fluoride disposed within at least a portion of the organic substrate.
Abstract:
A carbon dioxide (CO2) adsorption membrane or bed is operative to separate metabolic CO2 from an exhaust stream from a breathable atmosphere which is discharged from a closed habitable environment. The habitable environment is in a low ambient pressure surrounding. A portion of the scrubbed exhaust gas stream is diverted from the habitable environment and passed through a desorption chamber. The desorption chamber is open to the low ambient pressure surrounding to maintain a pressure which is slightly greater than the pressure in the ambient surrounding so that the desorption chamber gas stream will exit the system into the ambient surroundings. When the diverted exhaust gas enters the low pressure desorption pressure chamber its CO2 partial pressure content is reduced. The reduced CO2 partial pressure content of the gas stream in the desorption chamber enables the desorption chamber gas stream to remove CO2 from the adsorption membrane or bed.
Abstract:
Water vapor is removed from a mixture of air, metabolic carbon dioxide (CO2), and water vapor prior to removing the CO2 from the mixture. The water vapor-containing mixture is passed through a membrane module which is operative to separate the water vapor from the air and CO2 mixture. The water vapor in the entering mixture will pass in one direction through the membrane in the module from an entry side of the membrane to an exit side of the membrane. The membrane divides the module into two chambers, one of which receives the water vapor-containing mixture, and the other of which receives CO2-free air from a CO2 adsorbant station. The water vapor-containing mixture is removed from a closed habitable environment such as a space station, a space suit, a submarine, or the like, and is moved through the membrane module where the water vapor is removed from the gas stream. The water vapor-free gas stream then flows through the CO2 adsorption station where the CO2 and any remaining water vapor are separated from the air in the mixture. The CO2-free air then flows back through the membrane module via the membrane module exit chamber where the air is rehumidified with the water vapor that has passed through the membrane. The rehumidified air stream is then returned to the dosed habitable environment where it can be used for breathing purposes.