Abstract:
An apparatus for cutting food products. The apparatus includes a cutting device and housing thereabove that defines a passage with an opening in proximity to the cutting device for delivering the food product to the cutting device. The apparatus is preferably adapted to cut food products in a substantially horizontal plane, and as such the cutting device is preferably oriented to make a substantially horizontal cut through a food product. A lower portion of the housing has a lower extremity that defines the opening of the passage. The apparatus is equipped with various features that improve the operation of the apparatus and the consistency of the sliced product, particularly if the delivered food product varies in shape and size and may contain embedded stones.
Abstract:
A cutter assembly and high volume submersible shredder pump. These are for reducing the size of solids within a liquid which is to be pumped by chopping, grinding, shredding or cutting. An improvement over prior designs employs cutting lobes having a grooved surface which mate with corresponding grooves of a circular plate cutter. As a result, many more cutting surfaces are provided which more effectively and quickly shred the solid materials within the liquid to be expelled.
Abstract:
The invention relates to a rotary cutter for the pelletization of plastic extrudates, said rotary cutter being provided with knives projecting axially away from its end surface, said knives being individually affixed to supporting surfaces of the rotary cutter by means of fastening elements. The supporting surfaces are formed by the side walls of radial grooves in the peripheral surface of the rotary cutter and by radial transverse walls in the radial grooves, said radial grooves being limited by the radial transverse walls, the knives each being inserted in hook-like manner with a projecting portion into said radial transverse walls, wherein one side of the projecting portion forms an abutment for the fastening element, said fastening element penetrating a radial transverse wall and pressing on the abutment.
Abstract:
The invention relates to a rotary cutter for the pelletization of plastic extrudates, said rotary cutter being provided with knives projecting axially away from its end surface, said knives being individually affixed to supporting surfaces of the rotary cutter by means of fastening elements. The supporting surfaces are formed by the side walls of radial grooves in the peripheral surface of the rotary cutter and by radial transverse walls in the radial grooves, said radial grooves being limited by the radial transverse walls, the knives each being inserted in hook-like manner with a projecting portion into said radial transverse walls, wherein one side of the projecting portion forms an abutment for the fastening element, said fastening element penetrating a radial transverse wall and pressing on the abutment.
Abstract:
A protrusion on the side of the saw tooth rubs against the newly cut kerf surface as the tooth cuts. Pressure, friction and friction-generated heat are produced through this rubbing action. The confluence of this pressure, friction, and heat, performs a polishing action against the newly cut kerf surface.
Abstract:
An apparatus for rendering ovals of adjustable sizes and ellipticity upon various materials. An oval cutter comprises a clickerplate for adjusting the ellipticity of ovals in a single movement. The clickerplate can be rotated about a base using a knob mounted on the clickerplate. One embodiment of this invention comprises a storage compartment in the knob which can hold, for example, extra blades. A further embodiment of this invention comprises an arm that translates through the clickerplate and a swivel plate used for setting the overall size of the oval by locking the arm at a set length. In yet a further embodiment of this invention, ovals can be rendered in either a clockwise or a counterclockwise direction and an arrow can indicate the direction in which the apparatus is set to render ovals.
Abstract:
The preferred embodiment of the present invention comprises a pizza docking device having a pair of guides atop a pan and retaining a roller therein. Said roller has a plurality of pins thereon in spiral orientation. The device is dimensioned such that when an uncooked pizza crust is place on said pan, said roller may be traversed across said crust, docking it with perforations of a desired spacing and depth. A pair of shelves is provided in an elevated portion of said guides for placement of said roller up and away from said pan such that crusts may be placed and removed.
Abstract:
A slicing station for a high speed food loaf slicing machine that slices one, two, or more food loaves simultaneously using one cyclically driven knife blade; the slices are stacked or shingled in groups on a receiving conveyor located below the slicing station. Independent loaf feed drives are provided so that slices cut from one loaf may be thicker than slices from the other. The slicing station, enclosed by a housing except for a limited slicing opening, includes a knife blade having an elongated arcuate cutting edge and a drive that moves the knife blade at a predetermined cyclic rate along a closed cutting path through the slicing range, which range intersects the ends of food loaves fed at predetermined rates into the slicing station. A marker moving with the blade is sensed by a fixed sensor to establish a home position for the blade. There is a honing device to sharpen the cutting edge of one type of blade, with the blade in its home position. A pressure seal is provided to preclude entry of hot water or steam into the slicing station during cleanup. A door mechanism closes off the slicing opening when no food loaf slices are to be cut. The slicing station includes a shear edge member to guide the end of a food loaf into the cutting path of the knife blade.
Abstract:
The invention relates to a method of making expanded foodstuffs which are extruded and cut, reduced pressure being applied at the nozzle outlet, said method being distinguished in that the cutting blades are set in such a manner that the surface of the cutting blades is configured in the manner of a ship's screw for generating reduced pressure at the point at which the extrudate emerges from the nozzle.
Abstract:
A method and apparatus are disclosed for efficiently cutting food items, such as potatoes, into helical strips. The food items are provided seriatim to the cutting assembly from a conveyor system fed by a trough shaker or other singulator device. Food items on the conveyor are aligned longitudinally and are then impaled on small spikes protruding from the conveyor so that they maintain the longitudinal orientation during their travel to a feed roller portion of the system. The feed rollers firmly grip the food items by their peripheries and advance them into the rotary cutting assembly. This assembly includes a helically shaped cutting member defining at a leading edge thereof a slicing blade and supporting on its front surface a plurality of perpendicularly extending scoring blades. The helically shaped cutting member is mounted at its periphery by being threadedly received in a helical thread cut in an annular holder. This holder, in turn, is affixed to a toothed drive ring which is rotatably mounted in a cutting assembly housing. This composite assembly is removably mounted in the apparatus and the toothed drive ring driven by a drive gear that extends through an opening in the housing. The apparatus cuts food items quickly and efficiently and includes features designed to minimize cutting stresses that may impair the structural integrity of the resulting products.