Abstract:
A wet pipe fire protection sprinkler system and method of operating a wet pipe fire sprinkler system includes providing a sprinkler system having a pipe network, a source of water for the pipe network, at least one sprinkler head connected with the pipe network and a drain valve for draining the pipe network. An inert gas source, such as a nitrogen gas source, is connected with the pipe network. Inert gas is supplied from the inert gas source to the pipe network. Water is supplied to the pipe network thereby substantially filling the pipe network with water and compressing the inert gas in the pipe network.
Abstract:
A breather cap assembly is provided which is configured to be connected to a stand-tube used in a watering system. When the watering system is in normal operation, the breather cap assembly is configured to allow for air to flow between the outside the assembly and the stand-tube. The breather cap assembly also provides for structure which acts as a baffle to minimize the introduction of foreign material from outside the breather cap assembly into the stand-tube. When the watering system is in flushing operation, the breather cap assembly is configured to seal off the stand-tube in order to minimize the possibility of water leaving the stand-tube. The breather cap assembly further also provides for structure which acts as a baffle to collect and retain a majority of any water that does leave the stand-tube during a flushing operation.
Abstract:
Disclosed herein is a system and method for controlling evaporative emissions in an internal combustion engine. A control valve assembly having a valve housing having an inlet portion, a first outlet portion and a second outlet portion, and a vapor chamber is provided. The vapor chamber is situated within the housing and is in communication with the inlet portion, first outlet portion and second outlet portion. The assembly is configured to receive fuel vapors from a fuel vapor source, through the inlet portion into the valve chamber. The assembly is further configured to selectively actuate a piston member situated at least partially inside the valve chamber for communicating the fuel vapors in the vapor chamber to either: (i) at least one of the atmosphere and an engine air inlet system via the second outlet portion when the engine is operating or otherwise engaged to be operated, or (ii) to a crankcase of the engine via the first outlet portion when the engine is not operating.
Abstract:
A fill cover assembly for a liquid fuel storage tank of a road tanker, the assembly comprising: a seat member having a frame, the frame defining a fill aperture, the frame being configured to be fixedly coupled to a base plate of a liquid storage tank, the base plate having a plate aperture formed therein, thereby to form a fluid-tight seal between the seat member and the base plate around said plate aperture; and a fill-cover coupled to the tank and arranged to be moveable with respect to the frame between a closed condition in which a fluid-tight seal is formed between the fill-cover and the frame and an open condition in which fluid may be passed through said fill aperture to fill said storage tank, wherein the assembly is further arranged to allow venting of pressurized fluid from the liquid storage tank in the event that a pressure of the fluid exceeds a prescribed value.
Abstract:
A method for creating ullage in a fuel tank includes the steps of porting NEA into a mixing chamber during descent, exposing the mixing chamber to ambient air and communicating a mixture of NEA and ambient air into the fuel tank. A complementary apparatus to the method includes a mixing chamber for receiving NEA during descent, a port for communicating ambient air with the mixing chamber during descent and a port for communicating a mixture of the NEA and the ambient to the fuel tank.
Abstract:
A wet pipe fire protection sprinkler system and method of operating a wet pipe fire sprinkler system includes providing a sprinkler system having a pipe network, a source of water for the pipe network, at least one sprinkler head connected with the pipe network and a drain valve for draining the pipe network. An inert gas source, such as a nitrogen gas source, is connected with the pipe network. Inert gas is supplied from the inert gas source to the pipe network. Water is supplied to the pipe network thereby substantially filling the pipe network with water and compressing the inert gas in the pipe network.
Abstract:
An apparatus, system, and method are disclosed for draining a liquid. An inner drain body is disposed on a container, with an inner liquid outlet in its lower portion, and an air inlet above and at a radial offset from the inner liquid outlet. An outer drain body is disposed around and below the inner drain body, and is adjustably coupled to the inner drain body. An outer liquid outlet is disposed in the outer drain body. A lower seal is disposed below the inner liquid outlet and between the inner drain body and the outer drain body, engaging a lower sealing surface. An upper seal circumscribes the inner liquid outlet and the air inlet, and is disposed between the inner drain body and the outer drain body, engaging an upper sealing surface that extends further beyond the upper seal than the lower sealing surface extends beyond the lower seal.
Abstract:
The present invention relates to a simple fuel vent assembly for use in inboard and outboard fuel tanks for marine vessels. The vent assembly includes upper and lower portions defining an L shaped interior passageway. The lower portion includes upper and lower valve seats positioned within this passageway. Spaced vent openings extend through the lower portion above and below the valve seat. A spherical float is positioned within the passageway between the upper and lower valve seats. As fuel is added to the tank, pressure can escape through the fuel vent. The flow valve is within the passageway as the level of liquid fuel in the tank rises during the fuel refilling process. When the tank is at its desired fill level the float engages the upper valve seat and forms a seal preventing liquid fuel from traveling past the upper seat and through the passageway into the atmosphere outside the tank. The second vent opening remained open to vent pressure from the space between the top of the tank and the fuel level.
Abstract:
An apparatus and method for substantially preventing access to an inlet of a vent. The apparatus may comprise a housing attachable to the inlet of the vent and having one or more traps position therein to block insertion of a fluid insertion device through the housing and to the inlet of the vent. The traps may be formed by intersections of interior panels within the housing. The traps may be configured to allow fluid flow to exit the vent inlet and pass through the housing before venting.
Abstract:
A fuel refilling assembly for transferring fuel from a nozzle to a fuel tank of a motor vehicle. The fuel refilling assembly includes a fuel filler neck extending out from the fuel tank. The fuel filler neck has a tank end disposed adjacent the fuel tank and a distal end. A housing is fixedly secured to the distal end of the fuel filler neck. The housing defines an opening for receiving the nozzle therethrough. A flapper door is pivotally secured to the housing and is movable between a closed position for preventing access from the housing to the fuel filler neck, and an open position for allowing the nozzle to transfer fuel to the fuel tank via the fuel filler neck. A dampener mechanism abuts the flapper door. The dampener mechanism dampens the movement of the flapper door as the flapper door moves from the open position to the closed position upon the removal of the nozzle. As a result, excess fuel left in the housing after the nozzle has been removed therefrom is allowed to flow into the fuel filler neck prior to the flapper door moving to its closed position.