Abstract:
A sampling and rejection device for a boiler or steam generating system is described. The sampling and rejection device receives the condensate or fluid and allows a volume of the condensate to liquefy or the fluid to build up in the interior of the sampling and rejection device. One or more conductivity, pH, and temperature sensors or probes are positioned in the sampling and rejection device to measure the condensate. The sampling and rejection device includes a collection vessel to hold and temporarily store the condensate. The sampling and rejection device includes an outlet or a return line (to a central boiler) and a drain line. If the sensor measures undesirable conductivity, pH, or temperature in the condensate in the collection vessel, then a valve to the drain line is opened and the condensate is rejected.
Abstract:
A method of determining an operational parameter of a washing system having a wash tank to which water and material are added. In some embodiments, the method includes establishing a communication link between a sensor and a controller. The sensor is positioned in the wash tank and transmits a signal indicative of a material concentration. The controller receives the signal. Additionally, the method includes adding material to water in the wash tank, monitoring the material concentration while material is being added, and stopping the material addition upon the material concentration reaching a predetermined material concentration. The controller then determines an operational parameter indicative of the amount of material that is needed to reach the predetermined material concentration.
Abstract:
An automated solution maker is provided. The automated solution maker mixes a chemical with a solvent to a desired concentration. The concentration of the solution is monitored by measuring the conductivity of the solution. Based upon this measurement, the concentration of the solution may be adjusted.
Abstract:
An automated solution maker is provided. The automated solution maker mixes a chemical with a solvent to a desired concentration. The concentration of the solution is monitored by measuring the conductivity of the solution. Based upon this measurement, the concentration of the solution may be adjusted.
Abstract:
A system is adapted to automatically maintain a desired yield level for a slurry flow. Measurements of the electrical conductivity of a slurry are taken and corrected for the effects of temperature and pressure. The corrected conductivity measurements are used to arrive at a value for system yield. The system automatically determines if the yield is too high or too low relative to a desired level, and controls the rate at which accelerator is added to the slurry in order to increase or decrease yield.
Abstract:
An automated solution maker is provided. The automated solution maker mixes a chemical with a solvent to a desired concentration. The concentration of the solution is monitored by measuring the conductivity of the solution. Based upon this measurement, the concentration of the solution may be adjusted.
Abstract:
Apparatus and methods are disclosed for mixing and self-cleaning elements in microfluidic systems based on electrothermally induced fluid flow. The apparatus and methods provide for the control of fluid flow in and between components in a microfluidic system to cause the removal of unwanted liquids and particulates or mixing of liquids. The geometry and position of electrodes is adjusted to generate a temperature gradient in the liquid, thereby causing a non-uniform distribution of dielectric properties within the liquid. The dielectric non-uniformity produces a body force and flow in the solution, which is controlled by element and electrode geometries, electrode placement, and the frequency and waveform of the applied voltage.
Abstract:
An automatic analyzer analyzes a measurement item by making a sample and reagent react with each other and measuring the reaction result. This apparatus allows parameters associated with reagent dispensing executed by a reagent dispensing mechanism to be set as a dispensing condition for each measurement item or each type of reagent, and controls the reagent dispensing mechanism on the basis of the dispensing condition.
Abstract:
A method for conductivity calculation in a treatment fluid upstream and downstream a filtration unit in apparatuses for the blood treatment has been provided. The method comprises the steps of: creating a flow of treatment fluid in the filtration unit, imposing a change in the conductivity of the treatment fluid at the inlet of the filtration unit in order thereby to cause an induced conductivity change in the fluid at the outlet of said filtration unit and measuring a predetermined number of conductivity values Cdo downstream from the filtration unit belonging to a conductivity curve. It further comprises the steps of defining one interpolating mathematical function for the purpose of estimating the pattern of the conductivity curve Cdo in an interval of time after the occurrence of the induced conductivity change and determining a characteristic measuring time tcalcclr; finally the value of the interpolating mathematical function at said characteristic measuring time tcalcclr is evaluated and represents the conductivity value Cdo2 of the process fluid downstream from the filtration unit after the induced conductivity change.
Abstract:
Embodiments of the present invention are directed to improving the reclamation rate of the waste water of wet benches in semiconductor fabrication. In accordance with an aspect of the invention, a method for improvement of water reclamation rate comprises choosing a rinse recipe for a wet bench. The wet bench is activated, and waste water quality of waste water produced by the rinse recipe from the wet bench is detected to generate water quality data for a plurality of reclamation switch time levels. The waste water is directed to a water reclamation system during a reclamation time period after each of the plurality of reclamation switch time levels. The water quality data of the waste water is analyzed for the plurality of reclamation switch time levels. The method further comprises determining from analyzing the water quality data the best reclamation switch time for the chosen rinse recipe for the wet bench.