Abstract:
A process for producing a nitrogen-enriched vapor product from a supply of a nitrogen-rich liquid uses a purifying device and a distillation column having a distillation zone. The process includes the steps of: feeding at least a portion of the supply of the nitrogen-rich liquid to the distillation zone at a first location; feeding a stream of a gas containing nitrogen and at least one contaminant to the purifying device, wherein the gas is cooled by a cryogenic liquid whereby at least a portion of the at least one contaminant condenses, solidifies, or dissolves; eventually feeding at least a portion of the cool gas from the purifying device to the distillation zone at a second location below the first location; withdrawing a stream of the nitrogen-enriched vapor product from the distillation zone; and withdrawing a stream of an oxygen-enriched liquid from the distillation zone.
Abstract:
An activated alumina adsorbent used in a PSA air prepurification process for removal of carbon dioxide from the air is thermally regenerated when the carbon dioxide content remaining in the adsorbent following an adsorbent regeneration step of the PSA process reaches a certain level.
Abstract:
Process and apparatus for the purification of a cryogenic fluid in liquid, diphase, gaseous or supercritical state, having boiling point Pe, with at least one of its impurities having a boiling point Pe', with Pe'>Pe. The process includes at least one step selected from the group comprised by: a filtration step of at least one impurity in solid state, and an adsorption step of at least one impurity in liquid or gaseous state;and in which there is recovered at least one portion of the cryogenic fluid at least partially purified.
Abstract:
A system for producing cryogenic sterile nitrogen wherein liquid nitrogen is first vaporized and subsequently heated prior to undergoing sterilization, the warm sterilized nitrogen vapor is cooled to effect the vaporization of the liquid nitrogen, and the resulting cooled sterilized nitrogen is condensed to produce the product cryogenic sterile nitrogen. The system may be used to produce other cryogenic sterile cryogens also.
Abstract:
A system for producing high purity argon wherein crude argon produced in a cryogenic rectification plant is processed in a pressure swing adsorption unit. Residual gas from the pressure swing adsorption unit is recycled to the cryogenic rectification plant and high purity argon is cooled prior to recovery against oxygen-containing fluid which is subsequently passed into the cryogenic rectification plant.
Abstract:
A method and apparatus of separating air in which the air is rectified wig a single column nitrogen generator which produces a nitrogen stream which is expanded into a refrigerant stream and then taken as a medium pressure product. Oxygen enriched air can be taken as low pressure and medium pressure enriched air products. A stream of oxygen enriched air can be used to regenerate the pre-purification unit and also taken as a wet product.
Abstract:
The plant comprises an adsorbent-filled tank (8) permanently interposed in the line (2), between the purification unit (3), operating by adsorption of solidifiable impurities from the gas mixture (5) containing carbon monoxide, and the cryogenic separation unit which delivers pure carbon monoxide at its outlet (6). The adsorbent in the tank (8), advantageously the same as the adsorbent in the adsorbers (4A, 4B) of the purification unit (3), has an affinity for carbon monoxide, thus making it possible to reduce the cyclic variations in the carbon monoxide production delivery rate which results from the cyclic operation of the adsorbers (4A, 4B) of the separation unit (3).
Abstract:
Apparatus and a process for producing nitrogen or air containing not more than 0.5 ppm by volume of carbon monoxide. A nitrogen stream or air stream containing up to about 100 ppm by volume of carbon monoxide is subjected to cryogenic temperature swing adsorption in an adsorption bed containing calcium-exchanged type X zeolite, type 5A zeolite or 13X zeolite, which removes substantially all of the carbon monoxide from the nitrogen stream or air stream.
Abstract:
An integrated adsorption/cryogenic distillation process is set forth for the separation of an air feed. The air feed is passed through a vacuum swing adsorption (VSA) unit to remove impurities comprising water and carbon dioxide which will freeze out at cryogenic temperatures. The VSA sequence includes an adsorbent regeneration step whereby the impurity-saturated adsorbent is purged under vacuum with a purge gas. The resulting impurity-depleted air feed is fed to a cryogenic distillation column for rectification into a gaseous nitrogen overhead and a liquid oxygen bottoms. A waste stream from the distillation column is expanded, warmed against the impurity-depleted air feed to recover its refrigeration and subsequently recycled as the purge gas to the VSA unit. A key to the present invention is that the waste stream is expanded to the required sub-ambient pressure level in the cryogenic portion of the process. This enables one to recover all of the available refrigeration from the cryogenic waste stream prior to using such waste stream as the purge gas for the adsorption portion of the process.
Abstract:
A process and apparatus is disclosed for removing impurities from gases such as flue gases. A liquified gas such as nitrogen is introduced into direct contact with the gases to be cleaned of impurities concurrent with the introduction of a sorbent powder for cooling the gas to a temperature in the range of 60.degree. C. to -20.degree. C. and with nucleation precipitation and condensation of heavy metals, salts, acids and hydrocarbons onto the sorbent. A porous and permeable bed of said sorbent is formed through which the gases are drawn for absorption and adsorption of said precipitated and condensed material thereon. The pH of the sorbent is adjusted and maintained in the pH range of 9 to 11.