Abstract:
A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
Abstract:
A lead for active implantable medical devices comprising a chip, notably for electrode multiplexing. The lead (10) includes an insulating supporting tube (20) interposed in a flexible elongated tube, with a central bore (22) coaxial with the lumen of the lead. The supporting tube comprises on its surface at least one crossing conductive strip (28) extending in the axial direction. A chip (18) on a flexible substrate is disposed with a bent or curved conformation in a receptacle of the supporting tube isolated from the conductive strip. An electrode, e.g., for cardiac sensing/pacing, (16) on the supporting tube (20) is electrically connected to an outer conductive pad (24) of the chip. The conductive strip is connected (i) at each end (28b), face to face to a conductive connection (12), housed in the sheath, and (ii) in a central region (28a), to an inner conductive pad (26) of the chip.
Abstract:
A physiological sensor has light sources arranged in one or more rows and one or more columns. Each light source is activated by addressing at least one row and at least one column. The light sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
Abstract:
A system for use with a hospital bed having circuitry and a standard AC power outlet spaced from the hospital bed is provided. The system includes a cable assembly couplable to the circuitry of the hospital bed. The cable assembly has power conductors and at least one data conductor. The cable assembly also has a plug including a first power coupler coupled to the power conductors and a first data coupler coupled to the at least one data conductor. The system also includes a second data coupler mountable adjacent the standard AC power outlet. The second data coupler is configured to couple to the first data coupler when the first power coupler is coupled to the standard AC power outlet.
Abstract:
An extracorporeal blood system includes: an extracorporeal blood machine; an arterial line extending from the extracorporeal blood machine; a venous line extending from the extracorporeal blood machine; and an access disconnection circuit for detecting a disconnection of at least one of the arterial or venous lines from a patient, the access disconnection circuit including (i) a signal generation source having first and second signal generation source electrical lines each in electrical communication with blood traveling through one of the arterial or venous lines, (ii) a conductive pathway electrically communicating blood traveling through the arterial line with blood traveling through the venous line, and (iii) a signal processing unit positioned and arranged to process a signal generated by the source to detect the disconnection of the at least one of the arterial and venous lines.
Abstract:
This document discusses, among other things, a system capable of resolving interactions between programmable parameters for operation of a medical device. Programming these devices is a difficult task when many parameters are involved. The disclosed systems and methods attempt to reduce and minimize constraint violations between interdependent parameters using an initial set of parameter values supplied by user (typically a physician) input or calculated automatically, and constraint violations describing invalid parameter values. If possible, a set of parameter values with less egregious constraint violations is generated and may be displayed to the user. A user is prompted to accept the set of parameter values and program the medical device.
Abstract:
A system for use with a hospital bed having circuitry and a standard AC power outlet spaced from the hospital bed is provided. The system includes a cable assembly couplable to the circuitry of the hospital bed. The cable assembly has power conductors and at least one data conductor. The cable assembly also has a plug including a first power coupler coupled to the power conductors and a first data coupler coupled to the at least one data conductor. The system also includes a second data coupler mountable adjacent the standard AC power outlet. The second data coupler is configured to couple to the first data coupler when the first power coupler is coupled to the standard AC power outlet.
Abstract:
A physiological sensor has light sources arranged in one or more rows and one or more columns. Each light source is activated by addressing at least one row and at least one column. The light sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
Abstract:
A physiological sensor includes an electrical grid to activate one or more light emitters by addressing at least one row conductor and at least one column conductor. Each light emitter includes a positive terminal and a negative terminal. The physiological sensor includes a first light emitter and a second light emitter. A first contact is communicatively coupled with the positive terminal of the first light emitter, the negative terminal of the second light emitter, a first row conductor, and a first column conductor. A second contact is communicatively coupled with the negative terminal of the first light emitter, the positive terminal of the second light emitter, a second row conductor, and a second column conductor. The first light emitter is activated by addressing the first row conductor and the second column conductor. The second light emitter is activated by addressing the second row conductor and the first column conductor.
Abstract:
This document discusses, among other things, a system capable of resolving interactions between programmable parameters for operation of a medical device. Programming these devices is a difficult task when many parameters are involved. The disclosed systems and methods attempt to reduce and minimize constraint violations between interdependent parameters using an initial set of parameter values supplied by user (typically a physician) input or calculated automatically, and constraint violations describing invalid parameter values. If possible, a set of parameter values with less egregious constraint violations is generated and may be displayed to the user. A user is prompted to accept the set of parameter values and program the medical device.