Abstract:
A direct carbonaceous material to power generation system integrates one or more solid oxide fuel cells (SOFC) into a fluidized bed gasifier. The fuel cell anode is in direct contact with bed material so that the H2 and CO generated in the bed are oxidized to H2O and CO2 to create a push-pull or source-sink reaction environment. The SOFC is exothermic and supplies heat within a reaction chamber of the gasifier where the fluidized bed conducts an endothermic reaction. The products from the anode are the reactants for the reformer and vice versa. A lower bed in the reaction chamber may comprise engineered multi-function material which may incorporate one or more catalysts and reactant adsorbent sites to facilitate excellent heat and mass transfer and fluidization dynamics in fluidized beds. The catalyst is capable of cracking tars and reforming hydrocarbons.
Abstract:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
Abstract:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
Abstract:
Provided are CO2 separation and recovery equipment that yields a higher CO2 recovery rate, and a coal gasification combined power plant including the CO2 separation and recovery equipment with high plant efficiency. The CO2 separation and recovery equipment, has a CO shift reactor in which a gas containing as its main components of CO and H2O is introduced and converted into CO2 and H2, and includes: an inlet valve that is provided on the inlet side of the CO shift reactor; an outlet valve that is provided on the outlet side of the CO shift reactor; a steam control valve for applying high-temperature steam to a foregoing part of the inlet valve; and a gas composition analyzer that senses a gas composition of a stream flowing into the CO shift reactor.
Abstract:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
Abstract:
In various implementations, feed streams that include methane are reacted to produce synthesis gas. The synthesis gas may be further processed to produce ultrapure, high-pressure hydrogen streams.
Abstract:
A method and system are described for on-board treatment of an exhaust stream containing CO2 emitted by a hydrocarbon-fueled internal combustion engine (ICE) used to power a vehicle in order to reduce the amount of CO2 discharged into the atmosphere which include: a. a first waste heat recovery zone on board the vehicle for receiving the high temperature exhaust gas stream in heat exchange relation and discharging the exhaust stream at a lower temperature, the waste heat recovery zone further including at least one heat exchanger and/or heat recovery device with an inlet for receiving the hot exhaust gas stream from the ICE for passage in heat exchange relation and an outlet for the cooled exhaust gas stream, the heat exchanger further including an inlet for receiving a heat exchange fluid at a first temperature and an outlet for discharging the fluid at a second higher temperature, the heat recovery device including power transmission means; b. a densification zone in fluid communication with the exhaust gas stream discharge outlet from the first waste heat recovery zone, the densification zone including means for reducing the temperature and volume of the CO2 to at least liquefy the CO2, and to produce a treated exhaust gas stream of reduced CO2 content; c. a separation zone in communication with the densification zone and having a discharge outlet for the treated exhaust stream; d. storage zone for receiving the densified CO2 for temporary storage on board the vehicle; and e. an exhaust gas conduit in fluid communication with the treated exhaust gas stream outlet from the separation zone.
Abstract:
In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
Abstract:
A gasification system includes a water source, a downstream system configured to receive a first stream having water from the water source, and a carbon a carbon dioxide injector configured to adjust a pH of the water using a second stream having carbon dioxide to form pH-adjusted water.
Abstract:
A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.