Abstract:
A system may include a compressor, a heat exchanger and an ITM. The compressor is configured to receive an air stream and compress the air stream to generate a pressurized stream. The heat exchanger is configured to receive the pressured stream and indirectly heat the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM). The ITM is configured to receive the heated pressurized stream and generate an oxygen stream and the non-permeate stream, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the heat exchanger.
Abstract:
In some implementations, a system may include a compressor, a heat exchanger and an ITM. The compressor is configured to receive an air stream and compress the air stream to generate a pressurized stream. The heat exchanger is configured to receive the pressured stream and indirectly heat the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM). The ITM is configured to receive the heated pressurized stream and generate an oxygen stream and the non-permeate stream, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the heat exchanger.
Abstract:
The process consists of a combination of a low temperature CO2 condensation separation step followed by either a physical or chemical solvent scrubbing process. The first step results in the partial pressure of CO2 in the gaseous steam being reduced to a value near the triple point pressure of CO2. Typically, the partial pressure of CO2 is reduced to the range 5.5 bar to 7.0 bar. The second stage process then removes the remaining CO2.
Abstract:
In some implementations, a system may include a compressor, a heat exchanger and an ITM. The compressor is configured to receive an air stream and compress the air stream to generate a pressurized stream. The heat exchanger is configured to receive the pressured stream and indirectly heat the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM). The ITM is configured to receive the heated pressurized stream and generate an oxygen stream and the non-permeate stream, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the heat exchanger.
Abstract:
In various implementations, feed streams that include ultrapure, high-pressure hydrogen streams and ultrapure, high-pressure nitrogen streams are reacted to produce ultrapure, high-pressure feed gas in a stoichiometric ratio to an ammonia synthesis reactor loop without or independent of including a methanol loop purge gas.
Abstract:
In various implementations, methanol is produced using a (CO+H2) containing synthesis gas produced from a combined POX plus EHTR or a combined ATR plus EHTR at a pressure of 70 bar to 100 bar at the correct stoichiometric composition for methanol synthesis so that no feed gas compressor is required for the feed to the methanol synthesis reactor loop.
Abstract translation:在各种实施方案中,使用由组合的POX加EHTR或组合的ATR加EHTR产生的(CO + H 2)的合成气在70巴至100巴的压力下以合适的化学计量组成用于甲醇合成来生产甲醇,因此不存在 进料气压缩机是进料到甲醇合成反应器回路所必需的。
Abstract:
A system may include a compressor, a heat exchanger and an ITM. The compressor is configured to receive an air stream and compress the air stream to generate a pressurized stream. The heat exchanger is configured to receive the pressured stream and indirectly heat the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM). The ITM is configured to receive the heated pressurized stream and generate an oxygen stream and the non-permeate stream, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the heat exchanger.
Abstract:
In various systems and processes, synthesis gas generation may be combined. A partial oxidation reactor (POX) and a gas convectively heated steam/hydrocarbon catalytic reformer (GHR) may be combined to produce synthesis gas. In some implementations, a partial oxidation reactor, a gas convectively heated steam/catalytic reformer, and a waste hat boiler may be combined to produce synthesis gas.
Abstract:
The present invention is a reformation process using a compact, plate-fin heat exchanger with multi-stream, multi-passage capability to provide parallel juxtaposed heat exchange of the various process streams of a reformation process.
Abstract:
An integrated cryogenic air separation unit power cycle system is disclosed wherein the air separation unit (ASU) is operated at elevated pressure to produce moderate pressure nitrogen. The integrated cycle combines a gasification section wherein a carbon source, e.g., coal is converted to fuel and combusted in a combustion zone. The combustion gases are supplemental with nitrogen from the air separation unit and expanded in a turbine. Air to the cryogenic air separation unit is supplied via a compressor independent of the compressor used to supply air to the combustion zone used for combusting the fuel gas generated in the gasifier system.