摘要:
An induced groundwater flow closed loop geothermal system provides safety associated with closed loop geothermal systems (e.g., no mixing of surface water, closed system fluid, and groundwater) and efficiency associated with open loop geothermal systems (e.g., increased heat transfer provided by groundwater flow). A heat exchanger connected to an external system is located in a hole in a geological formation. The hole has a depth below where groundwater is located. A fluid from the external system is routed through the heat exchanger. A pump is utilized to induce groundwater flow from the geological formation, across the heat exchanger and back to the geological formation to enable thermal transfer between the fluid and the groundwater and the groundwater and the geological formation. A casing may be located in the hole to provide structural support and grouting materials may be used to fill space around the casing enabling a groundwater flow path.
摘要:
A method of harnessing geothermal energy to produce electricity without polluting the environment by using universal portable closed loop systems is provided. The Scientific Geothermal Technology, The Self Contained In-Ground Geothermal Generator; The Self Contained Heat Exchanger; and The IN-LINE PUMP consist of several designs and variations complementing each other and/or operating separately in many different applications in energy sectors. The system can be used for harnessing heat from established lava (tube) flows; harnessing the waste heat from the flame on top of flare stacks; and other situation where a source of heat is difficult to access or is not suitable for relatively heavy equipment of a power plant or power unit. Also, included is an exemplary use for restoration of the Salton Sea which implements the Scientific Geothermal Technology for exchanging water from a salty terminal lake with oceanic water and for production of electricity and fresh water.
摘要:
The present invention relates to a vertical relay fluid storage barrel installed with fluid inlet and fluid outlet for whole or in part placement into natural thermal energy body in vertical or downward oblique manner, wherein a thermal energy exchanger is installed inside the relay fluid storage barrel temporarily storing thermal conductive fluid for external flow, the thermal energy exchanger is installed with fluid piping for the thermal conductive fluid passing through, to perform heat exchange with the fluid in the relay fluid storage barrel, and the fluid in the relay fluid storage barrel performs heat exchange with the natural thermal energy body.
摘要:
Geothermal power generating system in which turbine/generators are driven by hot gases and energy from a geothermal source. Both terrestrial and marine embodiments are disclosed and, in some embodiments, include a support structure positioned above a source of geothermal energy, one or more turbine/generators suspended from the support structure by a deployment system that can move the turbine/generators toward and away from a source of geothermal energy, heat sensors on the turbine/generators for sensing heat from the geothermal energy source, a control system responsive to the heat sensors for activating the deployment system to move the turbine/generators away from the geothermal energy source if the heat from the geothermal energy source becomes too great. Some embodiments also have a containment housing which extends to a fuel source release point in the floor of a body of water, encloses the turbine/generator, and funnels gas from the release point to the turbine/generator.
摘要:
A method of harnessing geothermal energy to produce electricity without polluting the environment by using universal portable closed loop systems is provided. The Scientific Geothermal Technology, The Self Contained In-Ground Geothermal Generator; The Self Contained Heat Exchanger; and The IN-LINE PUMP consist of several designs and variations complementing each other and/or operating separately in many different applications in energy sectors. The system can be used for harnessing heat from established lava (tube) flows; harnessing the waste heat from the flame on top of flare stacks; and other situation where a source of heat is difficult to access or is not suitable for relatively heavy equipment of a power plant or power unit. Also, included is an exemplary use for restoration of the Salton Sea which implements the Scientific Geothermal Technology for exchanging water from a salty terminal lake with oceanic water and for production of electricity and fresh water.
摘要:
A method for producing power from two geothermal heat sources includes: separating a first geothermal fluid from a first geothermal heat source into geothermal vapor comprising steam and non-condensable gases, and geothermal brine; supplying the geothermal vapor to a vaporizer; vaporizing a preheated motive fluid using heat from the geothermal vapor, wherein the heat content in the geothermal vapor exiting the flash tank is only enough to vaporize the preheated motive fluid in the vaporizer; expanding the vaporized motive fluid in a vapor turbine producing power and expanded vaporized motive fluid; condensing the expanded vaporized motive fluid to produce condensed motive fluid; and preheating the condensed motive fluid in a preheater using heat from a second geothermal fluid from a second geothermal heat source having a lower temperature and salinity content that the first geothermal fluid, thereby producing the preheated motive fluid, make-up water and heat-depleted geothermal brine.
摘要:
Methods are described for using heated fluids from enhanced geothermal systems projects that recover geothermal heat from hot dry rock resources, and then injecting the heated pressurized fluids into a suitable rock formation to create an artificial geothermal energy reservoir. The artificial geothermal reservoir can then be used to store thermal energy by boosting the enthalpy of injected fluids by exchanging against heated fluids from other sources including a solar thermal power plant. Recovered heated fluids are utilized in a geothermal power plant and the spent geothermal fluids can be injected to recover additional thermal energy from hot dry rock resources. One embodiment is a geosolar electric power generation project to provide a steady and flexible source of renewable energy from a hot dry rock geothermal source integrated with a concentrating solar power project.
摘要:
Cooling systems and methods are provided which include a heat sink having a housing with a compartment, a coolant inlet, and a coolant outlet. The housing is configured for a coolant to flow from the coolant inlet through the compartment to the coolant outlet, wherein the coolant is transferring heat extracted from one or more electronic components. The heat sink further includes one or more heat pipes having a first portion disposed within the compartment of the housing and a second portion disposed outside the housing. The heat pipe(s) is configured to extract heat from the coolant flowing through the compartment, and to transfer the extracted heat to the second portion disposed outside the housing. The second portion outside the housing is disposed to facilitate conducting the extracted heat into the ground.
摘要:
A steam power plant is suggested having, parallel to the high-pressure preheater passage (VW4 to VW6), a heat reservoir (A) which is loaded with preheated condensate in weak-load times. This preheated condensate is taken from the heat reservoir (A) for generating peak-load and inserted downstream of the high-pressure preheater passage (VW4 to VW6) into the condensate line (19.2) resp. the feed water container (8). Thus it is possible to quickly control the power generation of the power plant in a wide range without significantly having to change the heating output of the boiler of the steam generator (1). A steam power plant equipped according to the invention can thus be operated with bigger load modifications and also provide more control energy.
摘要:
An energy producing device is provided that includes a heat exchanger section to provide a heat exchange material, and a thermal riser to receive the heat exchange material from the heat exchange section and to heat the heat exchange material based on a down-hole resource. The thermal riser may include: an outer spiral pipe to circulate the heat exchange material in a downward manner, and an inner return pipe provided inside the outer spiral pipe to receive the heat exchange material from the outer pipe after passing through the spiral pipe.