Abstract:
An apparatus for use with an electronic device having a microphone. The apparatus comprises a structure configured to detachably couple to the device, and a generator supported by the structure. The generator is configured to generate a force that acts on the microphone and renders the microphone unresponsive to voice sounds.
Abstract:
Systems and method are provided herein for balancing of outputs from playback devices playing audio content in synchrony. In one embodiment, the balancing of outputs may involve receiving a first audio signal to be played by a first playback device according to a first crossover frequency, determining a limiting result by applying a limiting function associated with a second playback device to a second audio signal to be played by the second playback device according to a second crossover frequency, and based on the first limiting result, configuring the first playback device to play the first audio signal according to a third crossover frequency. In some cases, the first and second playback devices may be configured to play the first and second audio signals, respectively, in synchrony.
Abstract:
Systems and methods are provided herein for balancing of outputs from playback devices playing audio content in synchrony. In one embodiment, the balancing of outputs may involve receiving a first audio signal to be played by a first playback device, determining a first limiting result by applying to a second audio signal a limiting function associated with a second playback device, determining a limiting function based on the first limiting result, and configuring the first playback device to apply the determined limiting function when playing the first audio signal. In some cases, the first and second playback devices may be configured to play the first and second audio signals, respectively, in synchrony.
Abstract:
Disclosed herein are methods and apparatuses for the transmission of audio information from a bone-conduction headset to a user. The bone-conduction headset may be mounted on a glasses-style support structure. The bone-conduction transducer may be mounted near where the glasses-style support structure approach a wearer's ears. In one embodiment, an apparatus has a bone-conduction transducer with a diaphragm configured to vibrate based on a magnetic field. The magnetic field being based off an applied electric field. The apparatus may also have an anvil coupled to the diaphragm. The anvil may be configured to conduct the vibration from the bone-conduction transducer. Additionally, the anvil may be coupled to a metallic component. The metallic component may be configured to couple to a magnetic field created by the bone-conduction transducer.
Abstract:
An acoustic transducer includes a sound-producing member at least partially disposed within the first magnetic flux gap region between the magnetic poles. The sound-producing assemblage is magnetically excited through a magnetic circuit that passes from a location outside the magnetic flux gap region to inside the magnetic flux region through an air gap. The moving member is controllably movable under the influence of at least one varying magnetic field, and its movement is constrained by a unique combination of mechanical restraints and magnetic restraints imposed upon the moving member by the interaction of a plurality of magnetic fields.
Abstract:
An acoustic apparatus includes a first acoustic element, a second acoustic element, and a registration portion. The first acoustic element and the second acoustic element are elements such as a coil, a reed, or a yoke. The registration portion is configured to register the first acoustic element with respect to the second acoustic element such that an exact and relative alignment and positioning between the first acoustic element and second acoustic element is provided and ensured.
Abstract:
A speaker module for a personal communication device includes two transducers for generating sound on the basis of an electrical signal. One transducer outputs sound to the surroundings from a sound output thereof and the other transducer outputs sound to the surroundings via the first transducer. In this manner, two transducers require only one sound output. The sound from the second transducer may be transmitted through and filtered by an opening in a diaphragm of the first transducer. Filtering elements may be provided between the two transducers.
Abstract:
An electro-magnetic driver transducer free of torque in the presence of an external magnetic field, of any direction and orientation (such as in a Magnetic Resonance Imaging environment). The transducer includes a housing. At least one coil is associated with the housing. A plurality of magnets within the housing are aligned along an axis in an anti-parallel orientation. The magnets are free to move along an axis, wherein vibration of the magnets causes vibration of the housing. The transducer may be, for example, fixed to an ossicle.
Abstract:
A vibrator has a cup-shaped casing, a substrate provided to close an upper end opening of the casing, a magnetic circuit assembly provided in the casing, a first suspension and a second suspension that support the magnetic circuit assembly from above and below, and a voice coil secured to the substrate and inserted into a magnetic gap in the magnetic circuit assembly. The first suspension has an inner fixed portion that is secured to the substrate and that has a radially inner ring-shaped portion and a pair of extensions extending radially outward from mutually diametrically opposing positions on the ring-shaped portion. The first suspension further has a pair of leaf spring portions arcuately extending from the respective extensions through an angle of about 270 ° in symmetry to each other around the axis of the voice coil. Further, the first suspension has outer fixed portions disposed at the distal end portions of the leaf spring portions and secured to the upper end surface of a weight of the magnetic circuit assembly.
Abstract:
A transducer utilizes a sound-producing member positioned in the area of magnetic flux concentration between magnetic poles of opposite polarity. The sound-producing member is variably vibratable in a magnetic structure between the poles to generate acoustic waves, and an acoustic conduit carries the acoustic waves through the magnetic poles e to a location outside the magnetic structure.