Abstract:
The invention relates to an assembly comprising a sound emitter and at least two sound detectors fixed to each other, wherein each detector has a sound receiving opening. The sound receiving openings of at least two of the detectors point in opposite directions.
Abstract:
The present invention relates to a hearing aid comprising a receiver and signal processor circuitry operatively connected hereto. The signal processor circuitry comprises amplifying means (e.g., a Class D amplifier) adapted to generate a switched output voltage for driving the receiver of the hearing aid. Moreover, a power supply unit is included and is adapted to generate a DC output voltage from the switched output voltage. The present invention further relates to an associated method for generating a DC output voltage.
Abstract:
A miniature receiver or transducer with improved viscous damping. The receiver may be a moving armature receiver using shearing forces for damping the deflection of the diaphragm. In this receiver, the damping element, which may be a liquid, extend in a direction of the deflection of the armature or diaphragm. Another embodiment relates to a transducer where the damping element engages the diaphragm.
Abstract:
An acoustic receiver comprises means for converting an input audio signal into an acoustic signal. The receiver has a housing having a plurality of sides that surround the converting means. One of the sides include an output port for broadcasting the acoustic signal. A jacket fits around the housing and has sections for engaging the sides. The sections are generally flat. The jacket may also form a gap with a corresponding side surface of the housing. A printed circuit board can be located within the gap. The printed circuit board including electronics for processing said input audio signal.
Abstract:
The present invention relates to an electro-acoustic transducer suitable for applications within mobile communication equipment and hearing aids. The transducer comprises two diaphragms positioned on opposite sides of a magnetic circuit having two magnetic gaps. When used as a microphone the transducer is substantially insensitive to vibrations, and when used as a speaker the transducer generates only very low vibration levels. The magnetic circuit has a number of advantages compared to conventional transducers with circular magnetic. The transducer can be made lightweight and with very compact dimensions compared to conventional designs. In a preferred embodiment the diaphragms are rectangular. The transducer may additionally be used as a vibration generator for silent alarm signals.
Abstract:
A transducer which is particularly suitable for hearing aids is set forth which has improved resistance to mechanical shock. The transducer includes a coil having a tunnel, a magnetic member with a pair of magnets defining an air gap and an armature extending through the tunnel and into the air gap. The coil is rotated with respect to the magnetic member in a manner such that the coil forms a stop for the armature, thus preventing excessive deflection of the armature leg in the occurrence of a shock. The armature may also be provided with expanded edge portions which assist in limiting its deflection.
Abstract:
A receiver or loudspeaker having a plurality of sound generators each having a housing and a sound output. An oblong channel is formed by a channel-forming element and parts of the housings. The sound outputs are positioned on one side of a middle of the channel and a outlet of the channel is positioned on the other side of the middle of the channel so that the channel has a length adapted to acoustically alter the sound. The use of the housings for forming the channels provides a more compact structure.
Abstract:
Moving armature receiver assemblies wherein a first U-shaped armature and a second U-shaped armature are configured for suppression of vibration of a housing structure along a longitudinal housing plane.
Abstract:
An connector assembly for use in, for example, a hearing aid, the assembly having a first connector and a second connector adapted to be detachably attached and being able to transport both sound and electric signals. The invention also relates to an assembly comprising the connector assembly and having a first part comprising an electrical input and a sound providing receiver as well as both an audio output and an electrical output. The two outputs are connected to a second element, normally for positioning inside an ear canal of a person, the second element having a receiver for receiving the electrical signal from the first elements and providing a corresponding sound which is mixed with the sound output by the second element, the mixed sound being output from the second element. The receiver of the first element may be a woofer, and the receiver of the second element may be a tweeter.
Abstract:
A hearing aid having two physically separate receivers, one for outputting low frequency (LF) acoustic sounds and another for outputting high frequency (HF) acoustic sounds. The LF receiver's output port is connected to a tube in which the HF receiver is inserted. The LF acoustic sounds either flow around the HF receiver, which include standoffs to space the HF receiver away from the inner tube wall, or through a channel in the HF receiver. At the output of the HF receiver, the LF and HF acoustic sounds are combined to form an acoustic signal that is transmitted to the ear canal. The LF receiver can be optimized for compliance, distortion, resonance frequency, and output. Its orientation is selected for reducing the overall size of the hearing aid. The HF receiver is smaller and placed far away from any microphone(s), reducing feedback effects, and may have a cylindrical or rectangular shape.