Abstract:
A miniature receiver or transducer with improved viscous damping. The receiver may be a moving armature receiver using shearing forces for damping the deflection of the diaphragm. In this receiver, the damping element, which may be a liquid, extend in a direction of the deflection of the armature or diaphragm. Another embodiment relates to a transducer where the damping element engages the diaphragm.
Abstract:
A transducer which is particularly suitable for hearing aids is set forth which has improved resistance to mechanical shock. The transducer includes a coil having a tunnel, a magnetic member with a pair of magnets defining an air gap and an armature extending through the tunnel and into the air gap. The coil is rotated with respect to the magnetic member in a manner such that the coil forms a stop for the armature, thus preventing excessive deflection of the armature leg in the occurrence of a shock. The armature may also be provided with expanded edge portions which assist in limiting its deflection.
Abstract:
A miniature receiver or transducer with improved viscous damping. The receiver may be a moving armature receiver using shearing forces for damping the deflection of the diaphragm. In this receiver, the damping element, which may be a liquid, extend in a direction of the deflection of the armature or diaphragm. Another embodiment relates to a transducer where the damping element engages the diaphragm.
Abstract:
A transducer, in particular suitable for hearing aids, comprising a coil, two spaced magnet elements, a membrane, and a U-shaped armature, a first leg of the U-shaped armature extending through the coil and the two magnet elements and being coupled with the membrane by means of a connecting element, limiting means being provided for limiting the maximum deflection of the first leg of the armature, which limiting means are disposed on the connecting element.
Abstract:
A speaker module for a personal communication device includes two transducers for generating sound on the basis of an electrical signal. One transducer outputs sound to the surroundings from a sound output thereof and the other transducer outputs sound to the surroundings via the first transducer. In this manner, two transducers require only one sound output. The sound from the second transducer may be transmitted through and filtered by an opening in a diaphragm of the first transducer. Filtering elements may be provided between the two transducers.
Abstract:
The invention relates to an assembly comprising a sound emitter and at least two sound detectors fixed to each other, wherein each detector has a sound receiving opening. The sound receiving openings of at least two of the detectors point in opposite directions.
Abstract:
The present invention relates to a hearing aid comprising a receiver and signal processor circuitry operatively connected hereto. The signal processor circuitry comprises amplifying means (e.g., a Class D amplifier) adapted to generate a switched output voltage for driving the receiver of the hearing aid. Moreover, a power supply unit is included and is adapted to generate a DC output voltage from the switched output voltage. The present invention further relates to an associated method for generating a DC output voltage.
Abstract:
An acoustic receiver comprises means for converting an input audio signal into an acoustic signal. The receiver has a housing having a plurality of sides that surround the converting means. One of the sides include an output port for broadcasting the acoustic signal. A jacket fits around the housing and has sections for engaging the sides. The sections are generally flat. The jacket may also form a gap with a corresponding side surface of the housing. A printed circuit board can be located within the gap. The printed circuit board including electronics for processing said input audio signal.
Abstract:
The present invention relates to improvements in acoustical venting of hearing aid earmolds and to miniature loudspeakers with housing structures configured to support improved hearing aid venting. The miniature loudspeaker comprises a front chamber with first and second separate sound ports so as to allow the front chamber to form an integral part of the acoustical vent of the hearing aid earmold. Thus, while using the same opening in the hearing aid for both sound output and venting, sound from the outside of the hearing aid may be introduced into the users ear via the same opening.
Abstract:
A semi-permanent hearing device is adapted to be inserted completely into the ear canal of a user. The semi-permanent hearing device comprises a first part and a second part each of which comprises at least one of the following electrical components: a microphone, a sound processing unit, a receiver and a battery. The first part and the second part are detachably connected to each other. In an alternative aspect of the invention, a hearing device comprises a microphone and a wax filter arrangement arranged to cover at least one audio canal through which sound propagates from a position outside the hearing aid and into the microphone. The wax filter arrangement comprises a wax filter and the wax filter arrangement is adapted to allow different parts of the wax filter to cover the at least one audio canal at different points in time.