Abstract:
A method for phase tracking reference signal (PT-RS) signals transmission includes receiving, by a user equipment (UE) from a base station (BS), one or more messages comprising uplink PT-RS configuration parameters and transmitting, by the UE to the BS, PT-RS signals via radio resources of a physical uplink shared channel (PUSCH). The transmitting is based on: the uplink PT-RS configuration parameters, a PT-RS sequence generation process for generating a PT-RS sequence, wherein the PT-RS sequence is based, on a, chirp signal with a time-varying frequency according to a chirp factor and an PT-RS mapping process for mapping the generated PT-RS sequence to the radio resources of the PUSCH.
Abstract:
The present technology relates to a transmission device and method as well as a reception device and method which can suppress the influence of interference. The transmission device sets different methods of changing the frequency of the chirp modulation for each of first information and second information different from the first information. The transmission device transmits the chirp-modulated first information or second information in accordance with the set frequency change method. The present technology can be applied to a wireless communication system.
Abstract:
An apparatus for determining a suitability of a frequency band for data communication with a node by way of a communication channel may be provided. The apparatus may comprise a receiver configured to receive first and second signals from the node by way of the communication channel, the first and second signals having frequencies within the frequency band. The apparatus may comprise processing circuitry communicatively coupled to the receiver, the processing circuitry being configured to determine a calibration function depending on the first signal, process the second signal depending on the calibration function, determine the suitability of the frequency band for data communication with the node by way of the communication channel depending on the processed second signal and output an indication of the said suitability. The processing circuitry may be configured to determine the suitability of the frequency band for data communication with the node depending on the processed second signal by comparison of the processed second signal to predetermined reference data.
Abstract:
A gateway device having a baseband processor for processing a plurality signals carrying a digital information modulated in the form of chirp signal, the chirp signals being either base chirps, for which the frequency changes from an initial instant to a final instant according to a predetermined base chirp function or modulated chirps, whose instantaneous frequencies vary according to one of a plurality of a functions that differ from said base chirp function, characterized in that the gateway device is arranged for simultaneously demodulating a plurality of signals having received at a same frequency and exhibiting different bitrates.
Abstract:
A method of securely communicating a data chirp signal from a transmitter to a receiver, the chirp signal comprising at least one symbol, each symbol comprising one or more identical chirps, each chirp encoding a symbol value, the method comprising: negotiating between the transmitter and the receiver encryption parameters of the chirp signal, the encryption parameters defining at least one property of each symbol of the chirp signal; at the transmitter, encrypting the chirp signal as negotiated; at the transmitter, encoding data in the chirp signal via the symbol value of each chirp; and transmitting the encrypted and encoded chirp signal from the transmitter to the receiver.
Abstract:
A spreading method and apparatus for spreading the spectral density of a pulse stream by summing a set of randomly selected zero-sum sequences to an incoming pulse stream and ensuring that the number of pulses output by the spreading method and apparatus is equal to the number of pulses input to the spreading method and apparatus.
Abstract:
Various embodiments of the invention are directed to orthogonal frequency chirp multiple accessing (OFCM) systems and methods. For example, various embodiments of the OFCM transmitter may utilize an architecture comprised of a baseband modulation subsystem, a subsystem for generating multiplicity N orthogonal frequency chirp waveforms, and a bank of multiplicity N spread spectrum modulators. Various embodiments of the OFCM receiver may comprise of a subsystem for generating complex conjugates of multiplicity N orthogonal frequency chirp waveforms, a bank of multiplicity N spread spectrum demodulators, a symbol estimator, a symbol timing estimator, a frequency offset estimator, a carrier phase tracking loop, a multi channel estimator, and a baseband demodulation subsystem.
Abstract:
Disclosed is a method and an apparatus for channel estimation regarding electromagnetic wave multi-path characteristics between a sender and a receiver by using a chirp signal. The method includes the steps of (a) multiplying a received composite signal by a narrowband chirp-shift-keying signal or narrowband multiple center-frequency-chirp signal generated by the receiver itself and outputting a sum of individual frequency components resulting from difference in distance of multiple paths for up-chirp and down-chirp signal portions of a chirp-shift-keying signal, respectively, the received composite signal being formed by generating narrowband chirp-shift-keying signals or narrowband multiple center-frequency-chirp signals by the sender, sending the signals by a transmission antenna, receiving the signals by a reception antenna of the receiver via a multi-path channel, superimposing the signals, and adding the signals; (b) multiplying outputs of the up-chirp and down-chirp signal portions of the sum of individual frequency components and calculating a tolerance frequency output; (c) compensating for a frequency tolerance of the sum of individual frequency components by using the tolerance frequency output and generating a frequency compensation output; (d) compensating for discontinuity of chirp-shift-keying signals resulting from use of the narrowband chirp-shift-keying signals or the narrowband multiple center-frequency-chirp signals regarding the frequency compensation output and generating a discontinuity compensation output having no discontinuity; (e) decomposing the discontinuity compensation output into individual multi-path signals by using a frequency analysis method; and (f) extracting an attenuation component and a time delay component caused by the multi-path channel from the individual multi-path signals by using a size of frequency components of each frequency.
Abstract:
A compound chirp is provided in a received signal to permit a receiver to synchronize to the received signal. The compound chirp has temporally overlapping up frequency and down frequency components.
Abstract:
A time domain communications system wherein a broadband of time-spaced signals, essentially monocycle-like signals, are derived from applying stepped-in-amplitude signals to a broadband antenna, in this case, a reverse bicone antenna. When received, the thus transmitted signals are multiplied by a D.C. replica of each transmitted signal, and thereafter, they are, successively, short time and long time integrated to achieve detection.