Abstract:
The present invention discloses a distributed electrical cross apparatus, and a system and method for the distributed electrical cross apparatus implementing an SNC cascade protection. The apparatus includes a backboard and at least four single-boards integrated with electrical cross units, wherein the single-boards are inserted in the limited number of slots in the backboard, and these single-boards also set line-side service access units, client-side service access units and backboard access units. The present invention has both accessing of line-side services and accessing of client-side services in the same single-board, access and flexible scheduling of various services such as line-side services and client-side services and so on are implemented on the backboard with limited number of slots, and the function of the distributed electrical cross system processing various services is increased in the case of low cost.
Abstract:
A method for detecting data frame mode mismatch errors may include receiving a data frame that includes an overhead byte. It may be determined whether a value associated with the overhead byte indicates that a transmitting device operating mode matches a receiving device operating mode. In an additional implementation, it may be determined whether a value associated with the overhead byte indicates that a transmitting device output port matches a receiving device input port. An alarm may be generated when it is determined that the value associated with the overhead byte indicates that either the transmitting device operating mode does not match the receiving device operating mode or the transmitting device output port does not match the receiving device input port.
Abstract:
In order to enable nodes with a single protocol switch core to be used in a synchronous transmission network carrying both SDH and SONET traffic then one option is to convert traffic between protocols at the various network nodes. For example, if the network node has a switch core arranged for SONET, then when SDH traffic arrives at that node it can first be converted to SONET before being processed by the switch core and then converted back to SDH again if required. Known methods of converting between SONET and SDH are not suited for use at egress points of network nodes where pointer alignment processes do not occur. A new method of converting between SONET and SDH is described which overcomes these problems by reordering the position of stuff columns.
Abstract:
A data processing apparatus, having an overhead branching unit configured to branch a signal data into an overhead and signal data; a control unit configured to retain the overhead; a time slot interchange unit configured to perform time slot interchange on the signal data; and an overhead insertion unit configured to insert the signal data and the overhead output from the time slot interchange unit and outputting as signal data.
Abstract:
A field reconfigurable muxponder for use in an optical transport system. The muxponder includes one or more tributary cards, where each tributary card is adapted to receive an optical data signal and conditions the optical data signal into an intermediate data signal constituted in accordance with a tributary interface format. In this way, the muxponder is able to aggregate optical data signals having different protocols and/or different data rates. The muxponder further includes a chassis that is adapted to receive a predefined number of tributary cards and outputs an optical system signal independently from the availability of the optical data signals from the tributary cards. The tributary cards and the chassis integrally form one line card.
Abstract:
A channel data extracting circuit for extracting data for each channel from a frame in which byte data of channels are multiplexed includes a Banyan unit and data control unit. The Banyan unit distributes data for respective channels by Banyan switches of planes corresponding to the channels, and sequentially aligns word data. The data control unit transmits to the Banyan unit a control signal representing a channel to which data belongs, and controls the operations of the Banyan switches. A channel data extracting method is also disclosed.
Abstract:
Maintaining synchronization when sending/receiving multiple channels of data with a corresponding common reference clock signal. Synchronization signals (e.g., pulses) are generated periodically and the timing of channels is adjusted. In an embodiment, multiple sequences of parallel data elements are received on corresponding parallel data channels using a first common clock signal. Each sequence of parallel data elements is converted to a corresponding sequence of serial data elements. The serial data elements are transmitted on a corresponding serial channel using a serial clock as a common reference. A synchronization signal may be generated periodically with a time period of (the number of bits in each parallel data element x the time period of the serial clock), wherein ‘x’ represents multiplication operation. As the parallel data channels are synchronized in short intervals, synchronization is maintained.
Abstract:
A method and apparatus for the transmission of data through multiple clock domains using synchronous and asynchronous FIFOs are described. In an embodiment, a method includes receiving data at a first data transfer rate. Additionally, the method includes storing the data at the first data transfer rate in a synchronous storage device having a first storage area. The data at the first data transfer rate stored in the synchronous storage device is processed. The processing includes removing the data from the synchronous storage device. The processing also includes storing the data at the first data transfer rate in an asynchronous storage device having a second storage area. Additionally, the processing includes transmitting the data out from the asynchronous storage device at a second data transfer rate, wherein the storage area of the synchronous storage device is larger than the second storage area of the asynchronous storage device.
Abstract:
The virtually unused switching fabric of an OC-192 SONET transport node is used to greater effect when used as a switching node. Several of the nodes are used in the central office (CO) of a communication network. Each node terminates an optical network link and each node hosts a number of transport cards that also terminate different optical network links. The nodes provide space-switching between the cards. Additionally an intra-CO optical link is provided that interconnects the nodes to allow traffic flow between any of the optical network links in the CO that are terminated by transport cards or the nodes.
Abstract:
A high-speed optical network includes according to the invention a housing having a plurality of slots for accommodating a number of line cards and an optional backplane facilitating communication between the line cards. The line cards include a client communication interface and a DWDM communication interface, for example, gigabit Ethernet interface, SONET interface or DWDM interface. Advantages of the invention include a high-speed network and network components that are capable of performing at a level consistent with optical network systems and which efficiently supports DWDM in a space-effective and cost-effective manner.