Abstract:
A broadcast receiver includes a processor that processes a broadcasting signal, a detector that detects a level of a signal of a first predetermined band of the broadcasting signal, and an adjuster that adjusts at least one of a characteristic and an operation of the processor based on the detected level.
Abstract:
A receiver includes a first amplifier having an input for receiving an RF signal, and an output for providing an amplified RF signal, a switch section that selectively switches the amplified RF signal onto a selected one of a plurality of nodes, and a filter section comprising a plurality of filters coupled to respective ones of the plurality of nodes. A first filter of the plurality of filters comprises a first variable capacitor coupled in parallel with an inductance leg between a corresponding one of the plurality of nodes and a power supply voltage terminal. The first variable capacitor has a capacitance that varies in response to a tuning signal. The inductance leg includes a first inductor in series with an effective resistance, wherein the effective resistance has a value related to an upper cutoff frequency to be tuned by the first filter.
Abstract:
A multi-standard integrated television receiver is disclosed. According to the invention, a RF tracking filter is provided to receive a RF signal and then filter out a fifth order and above harmonics and a band-pass filter is provided to further eliminate harmonics. Moreover, a double quadrature mixer is provided to remove third order harmonics. Accordingly, the quality factor requirement of the RF tracking filter and the linearity requirement of the band-pass filter are relaxed. Thus, the RF tracking filter and the band-pass filter can be fully integrated without any external components.
Abstract:
In a double-tuning circuit including a primary tuning circuit having a first inductor and a first variable capacitive element connected in parallel and a secondary tuning circuit having a second inductor and a second variable capacitive element connected in parallel, a fixed part of a copper-foil pattern is connected to a connection point at which the double-tuning circuit is connected to an input terminal of a frequency mixing circuit, and a tip part of the copper-foil pattern extends to near the first inductor, whereby a trap circuit for attenuating an image frequency component is formed. A pattern is formed between a ground-side terminal of the first inductor and the ground, and a capacitor is connected between a connection point at which the first inductor is connected to one terminal of the pattern and a ground-side terminal of the second variable capacitive element.
Abstract:
A circuit includes, an attenuator responsive to an input signal and a feedback signal, a variable gain low-noise amplifier responsive to the attenuator and to the feedback signal, a tracking filter, a frequency converter, and an RSSI responsive to the variable gain amplifier to generate an output signal to which the feedback signal is responsive. The frequency converter may be a mixer having a single-ended input and a differential output. The circuit may further include an analog baseband block responsive to the mixer to filter out high frequency signals. The tracking tuner performs bandpass filtering operation on the output signals of the variable gain low-noise amplifier.
Abstract:
A receiver (400) includes a tracking bandpass filter (420) and a signal processing circuit (430-480). The tracking bandpass filter (420) has a first input for receiving a radio frequency (RF) signal, and an output, and includes a first portion (731) on a semiconductor die (730), and at least one inductor (721). The at least one inductor (721) is operatively coupled to the first portion of the tracking bandpass filter (420). The signal processing circuit (430-480) has an input coupled to the output of the tracking bandpass filter (420), and an output for providing a processed signal. The semiconductor die (730) and the at least one inductor (721) are integrated into a single multi-chip module (MCM) (710).
Abstract:
A multi-standard integrated television receiver is disclosed. According to the invention, a RF tracking filter is provided to receive a RF signal and then filter out a fifth order and above harmonics and a band-pass filter is provided to further eliminate harmonics. Moreover, a double quadrature mixer is provided to remove third order harmonics. Accordingly, the quality factor requirement of the RF tracking filter and the linearity requirement of the band-pass filter are relaxed. Thus, the RF tracking filter and the band-pass filter can be fully integrated without any external components.
Abstract:
A tuner is provided for converting any selected channel in an input band to zero intermediate frequency. The tuner input is connected to the inputs of a plurality of input stages. Each input stage comprises tracking filters having a passband which is tunable across the tuning range of the input stage, where the tuning ranges of the stages form a contiguous or overlapping set so as to provide tuning across the whole of the input band. Only one of the input stages is enabled at a time with the disabled stages being depowered. A frequency changer converts the selected channel from the enabled input stage to substantially zero intermediate frequency.
Abstract:
A frequency converting circuit which reduces the amount of leakage of oscillating signals to the output, includes a local oscillator; a mixer for mixing the input signal with the output of the local oscillator, and a variable trap circuit connected in the output of the mixer. The local oscillator includes a PLL circuit, and a tank circuit having a coil and a varactor diode whose capacity is controlled by the PLL circuit. The variable trap circuit also includes a coil and a varactor diode, and is controlled by the PLL circuit to resonate at an output frequency of the local oscillator.
Abstract:
A system and method for tuning baseband filters in wireless transceivers. A method comprises coupling a radio frequency (RF) signal generated by the wireless transmitter at an input of a wireless receiver, the RF signal having a desired frequency, measuring a magnitude of the coupled RF signal at an output of an analog-to-digital converter at an output of an analog baseband filter, wherein the magnitude is measured at the desired frequency, and adjusting a corner frequency of the analog baseband filter in response to the determining that the measured magnitude differs from a specified value.