Abstract:
A multiplexer (1) used in a communication device (5) includes an antenna (21) for a first frequency band group including 5GNR and an antenna (22) for a second frequency band group and includes a filter (12) for a first communication band and a filter (13) for a second communication band. The second frequency band group is higher than the first communication band, the second communication band is lower than the first communication band, the filter (12) includes a resonant circuit (31), an inductor (L1) connected to a node (n1) in a series arm path, and an inductor (L2) magnetically coupled with the inductor (L1).
Abstract:
This disclosure is directed to filtering in a transceiver of an electronic device. In some instances, active analog filters may be deployed in the transceiver of the electronic device to achieve greater linearity and/or reduce noise in the transceiver. However, as signal bandwidth grows increasingly larger, an active analog filter may consume excessive power. To remedy the excessive power consumption, a passive ladder LC filter may be used. Some LC ladder filters may include a limited quality factor (Q), which may lead to undesirable effects in the transceiver (e.g., voltage droop). To address these undesirable effects, certain components in the LC ladder filter may be relocated from an input port to a feedback chain of an amplifier coupled to the LC ladder filter. The new structure may enable components in the LC ladder filter to be tuned without causing additional voltage droop across the LC ladder filter.
Abstract:
A composite filter device includes bandpass filters whose respective one ends are electrically connected in common. A first bandpass filter of the bandpass filters includes a first filter, a switch, a second filter, and an impedance element that is electrically connected to the switch and having an impedance value larger than the input impedance value of the second filter. The switch is configured to be switched between a first state in which the first filter and the second filter are electrically connected and a second state in which the first filter and the impedance element are electrically connected.
Abstract:
Even when frequency characteristics are changed in association with multiple communication bands, an attenuation required for a specific frequency band outside a pass band is obtained. A multiplexer includes a transmission filter, a reception filter, and a common connection point. An antenna-side end of the transmission filter and an antenna-side end of the reception filter are connected to the common connection point. The transmission filter includes multiple resonators including a parallel-arm resonator and a variable capacitor that is connected in series with the parallel-arm resonator. An inductor for forming an attenuation pole is provided between the antenna-side end of the reception filter and the common connection point. By the inductor for forming an attenuation pole and the reception filter, which is capacitive, an attenuation pole at a frequency close to or equal to a specific frequency outside the pass band of a transmission signal is formed.
Abstract:
Methods and apparatuses for measuring a phase noise level in an input signal are disclosed. An input signal can be delayed to generate a delayed version of the input signal. Next, a phase difference can be detected between the input signal and the delayed version of the input signal. A phase noise level in the input signal can then be determined based on the detected phase difference. The measured phase noise level can then be used to suppress phase noise in the input signal.
Abstract:
A high-frequency filter includes a variable frequency filter, a fixed frequency filter, and switches. The variable frequency filter varies a passband in association with frequencies used in multiple communication band. The fixed frequency filter fixes a passband in association with a frequency used in a specific communication band different from the multiple communication bands. The switches are used to switch connection configuration to the variable frequency filter or the fixed frequency filter.
Abstract:
A method of constructing an RF filter comprises designing an RF filter that includes a plurality of resonant elements disposed, a plurality of non-resonant elements coupling the resonant elements together to form a stop band having a plurality of transmission zeroes corresponding to respective frequencies of the resonant elements, and a sub-band between the transmission zeroes. The non-resonant elements comprise a variable non-resonant element for selectively introducing a reflection zero within the stop band to create a pass band in the sub-band. The method further comprises changing the order in which the resonant elements are disposed along the signal transmission path to create a plurality of filter solutions, computing a performance parameter for each of the filter solutions, comparing the performance parameters to each other, selecting one of the filter solutions based on the comparison of the computed performance parameters, and constructing the RF filter using the selected filter solution.
Abstract:
A method of constructing an RF filter comprises designing an RF filter that includes a plurality of resonant elements disposed, a plurality of non-resonant elements coupling the resonant elements together to form a stop band having a plurality of transmission zeroes corresponding to respective frequencies of the resonant elements, and a sub-band between the transmission zeroes. The non-resonant elements comprise a variable non-resonant element for selectively introducing a reflection zero within the stop band to create a pass band in the sub-band. The method further comprises changing the order in which the resonant elements are disposed along the signal transmission path to create a plurality of filter solutions, computing a performance parameter for each of the filter solutions, comparing the performance parameters to each other, selecting one of the filter solutions based on the comparison of the computed performance parameters, and constructing the RF filter using the selected filter solution.
Abstract:
The present disclosure includes switching resonant filter circuits and methods. In one embodiment, a circuit includes a plurality of resonant switching circuits arranged in a three (3) or four (4) element PI network. In one embodiment, an undesired signal frequency is applied to two resonant switching circuits and a carrier frequency of an RF signal is applied to the other two resonant switching networks so that the network attenuates the undesired signal frequency and passes the carrier frequency. In another embodiment, the resonant switching circuits are configurable to shift a peak impedance so that undesired signals may be attenuated.
Abstract:
A high frequency inductor filter cooling apparatus and method of use thereof is described. In one embodiment, an inductor is potted in an epoxy-silica mixture to facilitate thermal transfer from the inductor. The inductor is optionally used to filter/invert/convert power. The inductor comprises a distributed gap core and/or a powdered core material. In one example, the minimum carrier frequency is above that usable by an iron-steel inductor, such as greater than ten kiloHertz at fifty or more amperes. Optionally, the inductor is used in an inverter/converter apparatus, where output power has a carrier frequency, modulated by a fundamental frequency, and a set of harmonic frequencies, in conjunction with a notched low-pass filter, a low pass filter combined with a notch filter and a high frequency roll off filter, and/or one or more of a silicon carbide, gallium arsenide, and/or gallium nitride based transistor.