摘要:
The configuring of a micromirror to suppress a resonance of the micromirror. As part of the configuring process, the micromirror is subjected to multiple actuation frequencies, and the micromirror response is measured in response to at least some of these actuation frequencies. A resonant frequency of the micromirror is then determined using at least some of the measured mechanical responses. Then, depending on this determined resonant frequency of the micromirror, notch filter parameters are selected. There is more than one possibility for notch filter parameters, where the selected possibility depends on the determined resonant frequency. The notch filter is then configured with the selected notch filter parameters.
摘要:
A circuit and method perform adaptive spectral enhancement at a frequency ω1 (also called “fundamental” frequency) on an input signal y which includes electromagnetic interference (EMI) at an unknown frequency, to generate a fundamental-enhanced signal φ1 (or its complement). The fundamental-enhanced signal φ1 (or complement) is thereafter used in a notching circuit (also called “fundamental notching” circuit) to generate a fundamental-notched signal y-φ1. The fundamental-notched signal y-φ1 is itself enhanced to generate a harmonic-enhanced signal φ2 that is used to notch the fundamental-notched signal y-φ1 again, in one or more additional notching circuits that are connected in series with the fundamental notching circuit. The result (“cascaded-harmonic-notched” signal) is relatively free of EMI noise (fundamental and harmonics), and is used as an error signal for an adaptation circuit that in turn identifies the fundamental frequency ω1. Use of a cascaded-harmonic-notched signal as the error signal improves speed of convergence of adaptation.
摘要:
A narrowband interference (NBI) canceller is coupled to an A/D converter to receive an input signal and supply an NBI-canceled signal to an error correcting decoder. In the NBI canceller, a first arithmetic unit receives the input signal and a predicted- interference signal, and supplies a difference thereof as the interference-canceled signal. A slicer receives the interference-canceled signal and supplies a decision signal. A second arithmetic unit subtracts the decision signal from the input signal to generate a noise signal. A coarse frequency estimator receives the noise signal and analyzes the frequency spectrum to generate a coarse estimate of a fundamental frequency of the NBI. The coarse estimate is used by an adaptive narrowband interference predictor to generate the predicted-interference signal while adaptively tracking the narrowband interference. Use of the NBI canceller in a transceiver can eliminate link drop caused by operation of wireless devices that generate EMI in a cable.
摘要:
A narrowband interference (NBI) canceller is coupled to an A/D converter to receive an input signal and supply an NBI-canceled signal to an error correcting decoder. In the NBI canceller, a first arithmetic unit receives the input signal and a predicted-interference signal, and supplies a difference thereof as the interference-canceled signal. A slicer receives the interference-canceled signal and supplies a decision signal. A second arithmetic unit subtracts the decision signal from the input signal to generate a noise signal. A coarse frequency estimator receives the noise signal and analyzes the frequency spectrum to generate a coarse estimate of a fundamental frequency of the NBI. The coarse estimate is used by an adaptive narrowband interference predictor to generate the predicted-interference signal while adaptively tracking the narrowband interference. Use of the NBI canceller in a transceiver can eliminate link drop caused by operation of wireless devices that generate EMI in a cable.
摘要:
The present invention relates to a blind adaptive filter for narrowband interference cancellation, which includes an adaptive filter, a delay unit coupled to the adaptive filter for generating a delayed signal with a predetermined delay length from the output signal of the adaptive filter, and an error calculation unit coupled to the adaptive filter and the delay unit. The error calculation unit compares the output signal from the adaptive filter and the delayed signal from the delay unit to extract error information, and feedback the first error information to the adaptive filter. The first error information is formed of a transfer function including a number of coefficients, and used to adjust the adaptive filter and remove interference in the next input signal. The disclosed technique is also applicable in wideband receivers, as well as resisting multiple strong narrowband interferences having a frequency sweep rate of tens of milliseconds.
摘要:
A notch compensation apparatus and method comprising, based on input to and output from a notch filter, dynamically calculating a desired change to a notch frequency of the notch filter and specifying the desired change to the notch filter so as to cancel an input resonance of uncertain or time varying frequency.
摘要:
In one embodiment an adaptive filter structure comprises a detector circuit (10) configured to receive an input signal (Sin), to detect a presence of a sweeping interference in the input signal, and upon detection of such sweeping interference to provide a first trigger signal (T1) to a delay circuit (20), wherein the first trigger signal (T1) comprises a first frequency indication (f1); the delay circuit (20) is configured, upon receiving the first trigger signal (T1), to provide a second trigger signal (T2) to a tracker circuit (30) after an adjustable amount of time; the tracker circuit (30) is configured, upon receiving the second trigger signal (T2), to estimate a frequency of the sweeping interference using a second frequency indication (f2), to track the estimated frequency and provide the estimated frequency as a third frequency indication (13) to a notch filter circuit (40); and the notch filter circuit (40) is configured to substantially eliminate the sweeping interference from the input signal (Sin) using the third frequency indication (f3) and therefrom provide an output signal (Sout).
摘要:
A parallel amplifier, a switching supply, and a radio frequency (RF) notch filter are disclosed. The parallel amplifier has a parallel amplifier output, such that the switching supply is coupled to the parallel amplifier output. Further, the RF notch filter is coupled between the parallel amplifier output and a ground. The RF notch filter has a selectable notch frequency, which is based on an RF duplex frequency.
摘要:
A receiver comprises an adaptive filter having an input for a digitized input signal, means for storing a pre-designed filter characteristic, means for analyzing a digital. representation of the input signal to determine a desired position of the filter characteristic to match the system requirements, and means for adapting the stored pre-designed filter characteristic in the frequency domain and/or the time domain to match the system requirements and for transforming the adapted filter characteristic to the time domain to update coefficients for the adaptive filter and for loading updated coefficients into adaptive filter. The updating of the coefficients may be done periodically. The adaptation may be one or more of adjusting bandwidth, frequency shift and, in the case of a bandpass characteristic, superimposing characteristics.
摘要:
The control of flexible systems is often difficult due to the exact frequencies of the elastic modes being hard to identify. These flexible modes may change over time, or vary between units of the same system. The variation in the modal dynamics may cause a degradation in performance or even instabilities unless compensated for by the control scheme. Controllers designed for these types of systems use notch filters for mode suppression. However variation in the parameters of the flexible modes may cause the need for wide notch filters. An adaptive scheme is proposed which uses an online estimator based on plant parameterization. The scheme may not use probe signals and may not rely on exact parameter identification of the unknown parameters. Instead it may continuously update itself to cancel the effect of the flexible modes by been able to identify the effect of the modal dynamics on the performance of the system. The adaptive notch filter can be designed narrower, adding less phase lag at lower frequencies, thereby allowing an increase in bandwidth and disturbance rejection capability. Simulation and experimental verification of the adaptive mode suppression scheme is given through the use of a laser beam pointing system. The adaptive scheme is compared to a non-adaptive scheme, and is able to decrease the standard deviation of the experimentally measured tracking error by 14% even when the flexible dynamics are unknown.