Abstract:
A preselect circuit maintains the dynamic range of a received RF input signal during bandpass filtering of the received RF input signal. The preselect circuit includes a Q-deficient passive bandpass filter for coupling to an antenna to receive a received RF input signal. The preselect circuit further includes a Q-enhancement circuit coupled to the Q-deficient passive bandpass filter, wherein the Q-enhancement circuit increases a Q-value of the Q-deficient passive bandpass filter by compensating for resistive inductive losses in the bandpass filter.
Abstract:
An amplifying system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The amplifying system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
Abstract:
A current-mode power amplifier is disclosed. In some embodiments, the power amplifier may include a first cascode transistor pair including a first transfer function coupled to a second cascode transistor pair including a second transfer function. The first transfer function may be an inverse of the second transfer function. The current-mode power amplifier may also include an inductive-capacitive (LC) resonant circuit to reduce the effects of gate capacitances of the first cascode transistor pair and the second cascode transistor pair. In some embodiments, the current-mode power amplifier may include a bias current controller. The bias current controller may adjust transistor bias currents based, at least in part, on an input signal received by the current-mode power amplifier.
Abstract:
This document discloses, among other things, a front end circuit having a selectable center frequency. The center frequency is selected based on a control signal proportional to a phase difference between a reference frequency and an amplifier output. A resonant frequency of a tank circuit coupled to the amplifier is tuned using the control signal.
Abstract:
An envelope-tracking current bias circuit includes a first rectifying circuit, a second rectifying circuit, and a first arithmetic circuit. The first rectifying circuit is configured to detect an envelope of an input signal, and provide an envelope detection signal comprising a first direct current (DC) offset voltage. The second rectifying circuit is configured to provide a second DC offset voltage corresponding to the first DC offset voltage. The first arithmetic circuit is configured to provide an envelope signal in which the first DC offset voltage is reduced through subtraction between the envelope detection signal and the second DC offset voltage.
Abstract:
An amplifying system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The amplifying system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
Abstract:
A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
Abstract:
A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
Abstract:
A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
Abstract:
A low noise amplifier circuit including: at least a first input and first output; at least a first stage of transistor amplification having a transistor input terminal; the circuit further comprising: an input driving circuit interconnecting the first input to the transistor input terminal, the input driving circuit including a parallel resonant circuit interconnected between the transistor input terminal and ground and a series resonant circuit interconnected between the input terminal and the transistor input terminal, the input driving circuit functioning as an input matching network for the circuit in conjunction with an input bias and decoupling network.