Abstract:
Provided is an insulating coating device for an electric wire, including a pressing pipe. The pressing pipe includes two first pressing parts which are configured to divide the pressing pipe into two parts along a longitudinal cross section of the pressing pipe, an inner wall of the pressing pipe is provided with an air bag, and the air bag is provided with an air pipe joint which penetrates to an outside of the pressing pipe. In the insulating coating device for the electric wire, a self-curing insulating material is coated on joints of the electric wires, the air bag is used to squeeze the self-curing insulating material such that the self-curing insulating material is shaped and compacted, so that cavities generated in a coating process is reduced, and the self-curing insulating material is uniformly attached to the joints of the electric wires.
Abstract:
A high-voltage DC cable joint including a multi-wall layered construction having individual concentrically arranged layers. The joint includes, from inside to outside, an inner conductive rubber layer, a field grading rubber layer made from a predetermined tailored formulation, an insulating rubber layer and an outer conductive rubber layer. The field grading rubber layer separates and interconnects the conductive rubber layers, and wherein the rubber layers are cross-linked by a by-product-free manufacturing method. The cable joint is preferably made from platinum cured rubbers by moulding process steps. In a preferred embodiment the cable joint is made by injection moulding.
Abstract:
An electric field control device for a high voltage cable includes a stress cone and a field grading adapter, wherein the stress cone and the field grading adapter are chemically bonded by vulcanization. An electric installation includes a power cable and the electric field control device. A method for producing the electric field control device is also disclosed.
Abstract:
A fitting for coupling ends of insulated conductors includes a sleeve to couple an end of a jacket of a first insulated conductor to an end of a jacket of a second insulated conductor. The sleeve is located between end portions of the insulated conductors. At least one of the ends of the sleeve is angled relative to the longitudinal axis of the sleeve. The sleeve has a longitudinal opening that extends along the length of the sleeve substantially the distance between end portions of the jackets of the insulated conductors. The longitudinal opening allows electrically insulating material to be filled into the sleeve.
Abstract:
A wire-harness packaging member covering a conductive path includes a setting portion which is provided on an outer surface of the wire-harness packaging member so as to set an attachment position of a post-fitted part attached to the wire-harness packaging member. The wire-harness packaging member is a tube body which is made of resin and with which an attachment portion is formed integrally as the setting portion when the tube body is molded out of the resin. The wire-harness packaging member is formed into a substantially linear shape as a whole, including a bendable tube portion formed as a portion which can be bent and a non-bendable tube portion formed as a portion which is hardly bent, and the attachment portion is formed in the non-bendable tube portion.
Abstract:
An electric junction box, comprises a plurality of bus-bars spaced apart from each other, and a case made of a resin, covering the plurality of bus-bars and including a window for exposing a portion of the plurality of bus-bars, wherein the window has a first edge located at respective exposed portions of the plurality of bus-bars and a second edge located between the respective exposed portions of the plurality of bus-bars; and the first edge is formed along a virtual line that is at an angle with respect to an extending direction of the bus-bars, and the second edge is formed with a depressed area having a shape of a rectangular triangle whose slope is the virtual line.
Abstract:
A mineral-insulated (MI) cable termination assembly and method of manufacturing same is disclosed. The cable termination assembly includes an MI cable having a MI cable conductor, a mineral insulating layer surrounding the MI cable conductor, and an outer metal sheath surrounding the mineral insulating layer. The cable termination assembly also includes an electrical cable having an electrical cable conductor. A connector is provided for electrically connecting the MI cable conductor to the electrical cable conductor. A molded joint surrounds an exposed distal portion of the MI cable conductor and an exposed distal portion of the electrical cable conductor. The molded joint is composed of a polymeric material adhered to the exposed distal portion of the MI cable conductor and the exposed distal portion of the electrical cable conductor.
Abstract:
A device configured to maintain an electric circuit in a fixed position during an overmolding process comprises a wire retainer configured to hold the electric circuit taut an in a fixed position while being molded within a molded item. The retainer has a first end and an opposite second end, and includes a first bushing defining a mounting hole for the molded item extending along a width axis. The built-in bushing includes front and back surfaces configured to be aligned and substantially co-planar with the front and back surfaces of the molded item. The device also includes a first securing member configured to secure a portion of the electric circuit to the retainer within the molded item, to hold the electric circuit in a fixed position within the molded item during the overmolding process.
Abstract:
A method is provided for manufacturing a semiconductive insulating shield for an electrical cable accessory. The method includes providing a substrate having a desired contour in relation to the electrical cable accessory. The substrate is then coated with an elastomeric semiconductive material to form a coated substrate. An elastomeric insulating dielectric material is then molded around the coated substrate, and the elastomeric semiconductive material and elastomeric insulating dielectric material are cured by applying heat and pressure sufficient to transfer the elastomeric semiconductive material to the elastomeric insulating dielectric material by chemical bonding.
Abstract:
An electrical splice enclosure for enclosing a splice of an electrical cable. The splice enclosure includes an enclosure housing. The housing is formed of a lower housing portion and a cover portion defining a bounded interior therein. The lower housing portion includes a bottom surface, an upwardly extending wall bounding the bottom surface and an open upper surface opposite the bottom surface. The lower housing portion further includes a cable entry opening through the wall for permitting entry of the cable into the lower housing portion. The cover portion is positionable over the open upper surface of the lower housing portion so as to enclose the cable splice within the enclosure housing. The cover portion and the wall each include an encapsulant fill opening for permitting the housing interior to be gravity filled with a curable encapsulant, with the housing being positioned in multiple different positions.