Abstract:
A lamp socket assembly to be installed in a light socket and receive electrical power therefrom. The lamp socket assembly to provide electrical power to a surveillance device that detects an occurrence of a security event and notifies the lamp socket assembly of the occurrence. In response to the notification, the lamp socket assembly to turn on a light bulb.
Abstract:
Disclosed is a lamp holder, which includes a front housing, a rear housing detachably connected to one end of the front housing, an end cap detachably connected to the other end of the front housing and a first connecting cap provided in the rear housing for connecting with a lamp, and further includes a compression spring, a conducting sheet and a conducting pole for contacting with an external power source. When one end of the lamp holder is connected with an external lamp socket, the conducting pole can keep a good electrical connection with the external power source due to the action of the compression spring; and when the other end of the lamp holder is connected with the lamp, the resilient sheet can keep a good electrical connection with the lamp due to the resilient sheet.
Abstract:
A terminal member assembly 1 has ground terminals (10A, 10B) each including a main body (20) in the form of a flat plate. A coupling (30) extends from the main body (20) and a wire connecting portion (40) is connected to an extending end of the coupling (30). The ground terminals (10A, 10B) are assembled with each other with the main bodies (20) overlapping each other. At least one (10A) of the ground terminals includes an overlap area (30A) to be overlapped with the coupling (30) of the other ground terminal (10B). The overlap area is located on a surface of the coupling (30) facing the adjacent other ground terminal (10B). A contact portion (36) is located in the overlap area (30A) and projects toward the coupling (30) of the other ground terminal (10B) and is configured to contact the coupling (30) of the other ground terminal (10B).
Abstract:
Apparatuses, methods and storage medium associated with an intelligent LED light apparatus are disclosed herein. In embodiments, an intelligent LED light apparatus may include a communication interface, a processor, a body that encases at least the communication interface and the processor, and a plurality of sensors of a plurality of sensor types disposed on the body. The processor may be configured to receive sensor data from the sensors, and transmit the sensor data or results from processing the sensor data to an external recipient. Further, for some embodiments, the intelligent LED bulb apparatus may further comprise LED lights, and the body further encases the LED lights. In other embodiments, the body may include a male connector to mate with a bulb receptor, and a female connector to mate with a LED bulb. Other embodiments may be disclosed or claimed.
Abstract:
Apparatuses, methods and storage medium associated with an intelligent LED light apparatus are disclosed herein. In embodiments, an intelligent LED light apparatus may include a communication interface, a processor, a body that encases at least the communication interface and the processor, and a plurality of sensors of a plurality of sensor types disposed on the body. The processor may be configured to receive sensor data from the sensors, and transmit the sensor data or results from processing the sensor data to an external recipient. Further, for some embodiments, the intelligent LED bulb apparatus may further comprise LED lights, and the body further encases the LED lights. In other embodiments, the body may include a male connector to mate with a bulb receptor, and a female connector to mate with a LED bulb. Other embodiments may be disclosed or claimed.
Abstract:
A system for remote control of lights and small appliances utilizing miniature remote control units, and a method for easily and simply setting which remote controls control which item(s). Unlike conventional remote controls which are moved from place to place, these miniature remote controls are so small they may be removably mounted at each location needed, unobtrusively or even hidden. Receivers for the remote signal are described manufactured within a lamp socket assembly, a very short light bulb socket adapter, the light bulb itself, a wallswitch dimmer and an outlet adapter. One remote control can control multiple receivers, or vice versa, or any other combination, without conflict and with the combination set up or changed more intuitively than in completing systems. Appliances may be turned on or off and lights may be dimmed precisely or set flashing in unison to summon help.
Abstract:
In one embodiment of lighting devices and lighting systems, the lighting device has a connection for connecting to a primary power supply and has a secondary power supply, such as a battery. A measuring circuit is operable to measure an impedance of the primary power supply connection and to determine from the measurement if a main power supply has failed, and if so whether to power light sources using power from the secondary power supply.
Abstract:
A temporary lighting fixture comprising of a housing, a light-bulb socket positioned in the housing, a male electrical plug in electrical communication with the light-bulb socket, and a fastener operatively connected to the housing. The fastener is adapted to secure the housing to an extension cord.
Abstract:
A battery interface includes an interface housing which encloses an electrical connector for an electrically powered device and a fuse electrically connected to the electrical connector. The fuse is preselected to match the electrically powered device to which electrical power is to be supplied via the electrical connector. The interface housing is configured to be disposed on a battery housing and to be operatively connected thereto.
Abstract:
Disclosed herein is an adapter device for enabling the use of a compact fluorescent lamp in a lighting apparatus having a socket for an incandescent lamp. The adapter device includes a fastening structure, a cap, green and red Light Emitting Diodes (LEDs), and a Direct Current (DC) power supply. The fastening structure fastens the compact fluorescent lamp. The cap supplies Alternating Current (AC) power to the fastening structure. The green LEDs emit light in a wavelength range of 498-530 nm, and the red LEDs emit light in a wavelength range of 620-700 nm. The LEDs are installed around the compact fluorescent lamp. The Direct Current (DC) power supply supplies DC power to the green LEDs and the red LEDs.