Abstract:
A long-distance radio frequency electronic identification tire structure is provided. When the production of the tire is completed and an electronic tag reading device is used for identification, an RFID chip of an ultra high frequency electronic tag of a main tire body receives and sends an electromagnetic wave signal generated by a far-field copper film antenna and the electronic tag reading device. The frequency band and the bandwidth of the electromagnetic wave signal are adjusted by a frequency band/bandwidth adjustment portion, and first and second field effect adjustment grooves of first and second field effect adjustment portions are configured to adjust the field effect when a tire bead bundle and a steel belt layer reflect the electromagnetic wave signal, so that the electronic tag reading device can read the identification code of the ultra high frequency electronic tag at a wide angle and a long distance.
Abstract:
An RF tag includes an inlay comprising an IC chip and an antenna, a planar auxiliary antenna laminated on the inlay in an insulating state to the inlay, and a substrate on which the inlay and the auxiliary antenna are laminated. The auxiliary antenna is formed into a rectangular planar shape including long sides each having a length of substantially ¼ of a wavelength of a radio wave frequency of the inlay, and has a cutout part which divides one of the long sides into two parts each having a length of substantially ⅛ of the wavelength of the radio wave frequency of the inlay. The cutout part is formed into a concave shape which is opened in an edge portion of the one of the long sides and has a predetermined width and depth to allow the IC chip of the inlay to be disposed therein.
Abstract:
A behind the ear hearing aid includes: a signal processor for processing a first audio signal into a second audio signal compensating a hearing loss of a user of the hearing aid; a receiver that is connected to an output of the signal processor for converting the second audio signal into an output sound signal; and a transceiver for wireless data communication interconnected with an antenna for emission and reception of an electromagnetic field; wherein the antenna comprises a first actively fed resonant structure provided proximate a first side of the hearing aid, a second actively fed resonant structure provided proximate a second side of the hearing aid, and a conducting segment short circuiting the first resonant structure and the second resonant structure to provide a current bridge between the first side of the hearing aid and the second side of the hearing aid.
Abstract:
A radio frequency applicator and method for heating a geological formation is disclosed. A radio frequency source configured to apply a differential mode signal is connected to a coaxial conductor including an outer conductor pipe and an inner conductor. The inner conductor is coupled to a second conductor pipe through one or more metal jumpers. One or more current chokes, such as a common mode choke or antenna balun, are installed around the outer conductor pipe and the second conductor pipe to concentrate electromagnetic radiation within a hydrocarbon formation. The outer conductor pipe and the second conductor pipe can be traditional well pipes for extracting hydrocarbons, such as a steam pipe and an extraction pipe of a steam assisted gravity drainage (SAGD) system. An apparatus and method for installing a current choke are also disclosed.
Abstract:
The present invention is directed to a selectively accessible enhanced radio-frequency identification (RFID) device, that is enhanced performance and security by being selectively responsive to predetermined electromagnetic interrogation thereof, that comprises an enhanced component for enabling a user to adjust and/or increase readable distances and selectively enable or disable interrogatory access to the enhanced RFID device, to protect from unauthorized interrogation thereof. The inventive enhanced RFID device comprises an antenna, a microchip and at least one enhanced component. The enhanced component may use “Electromagnetic Induction” to the antenna to increase performance (increase readable distances) and “Electromagnetic Shield”, to cover the antenna (for turn Off the RFID device). Therefore, the enhanced RFID device of the present invention provides an inventively user controllable, two functions in one of enhanced component, for enhanced performance and greater level of data security advantageously balanced with convenience.
Abstract:
A method for heating a hydrocarbon formation is disclosed. A radio frequency applicator is positioned to provide radiation within the hydrocarbon formation. A first signal sufficient to heat the hydrocarbon formation through electric current is applied to the applicator. A second or alternate frequency signal is then applied to the applicator that is sufficient to pass through the desiccated zone and heat the hydrocarbon formation through electric or magnetic fields. A method for efficiently creating electricity and steam for heating a hydrocarbon formation is also disclosed. An electric generator, steam generator, and a regenerator containing water are provided. The electric generator is run. The heat created from running the electric generator is fed into the regenerator causing the water to be preheated. The preheated water is then fed into the steam generator. The RF energy from power lines or from an on site electric generator and steam that is harvested from the generator or provided separately are supplied to a reservoir as a process to recover hydrocarbons.
Abstract:
The present invention provides a substrate type antenna having resonant frequencies different in a simple configuration. At least one loop-like another joint pattern one spot of which is divided is formed at a position opposite to a second joint pattern having common feeding points. Antennas are respectively connected to both end terminals of both of a first joint pattern and another joint pattern referred to above at their divided positions. The antennas connected to the first joint pattern and the antennas connected to another joint pattern referred to above are respectively made different in resonant frequency.
Abstract:
A behind the ear (BTE) hearing aid includes: a microphone; a signal processor; a receiver; a partition plane extending between a first side of the hearing aid and a second side of the hearing aid; and a transceiver for wireless data communication interconnected with an antenna for electromagnetic field emission and electromagnetic field reception, the antenna having a first feed point and a second feed point; wherein at least a part of the antenna intersects the partition plane at an intersection so that a relative difference between a first distance from the first feed point to the intersection and a second distance from the second feed point to the intersection is less than or equal a first threshold.
Abstract:
A behind the ear hearing aid includes: a transceiver for wireless data communication interconnected with an antenna for electromagnetic field emission and electromagnetic field reception, the antenna extending on a first side of a hearing aid and a second side of the hearing aid, a first segment of the antenna extending from proximate the first side of the hearing aid to proximate the second side of the hearing aid; and a feed system configured for exciting the antenna to induce a current in at least the first segment, the current having a first local maxima proximate the first side of the hearing aid and a second local maxima proximate the second side of the hearing aid.
Abstract:
A metal pipe includes a slot having a predetermined length in a longitudinal direction of the metal pipe and a wireless tag that is placed inside the metal pipe and includes a power feeding unit to feed electric power to the slot and an IC chip connected to the power feeding unit, thereby functioning as an antenna of the wireless tag. The metal pipe is thus managed by the wireless tag.