摘要:
A substrate drying apparatus includes a drying gas nozzle configured so that, assuming that a surface WA of the substrate W is a projection plane, regarding the drying gas flow Gf in the nozzle moving direction Dr, a collision position Gfw with the substrate W is located downstream of a projected discharge position Gfv′, the projected discharge position Gfv′ being a discharge position from the drying gas nozzle projected on the projection plane. In a three-dimensional space, the drying gas flow Gf is inclined, such that an angle α formed by an axis Ga of the drying gas flow Gf and a vertical line Wp of the substrate W is in a range from a half contact angle θ/2 to an angle determined by deducting the half contact angle θ/2 from 90°, the half contact angle θ/2 being a half of the contact angle θ.
摘要:
The present disclosure provides a semiconductor fabrication apparatus in accordance with one embodiment. The apparatus includes a wafer stage that is operable to secure and rotate a wafer; a polish head configured to polish a backside surface of the wafer; an air bearing module configured to apply an air pressure to a front surface of the wafer; and an edge sealing unit configured to seal edges of the wafer.
摘要:
A system and method of cleaning a plasma processing chamber component includes removing the component from the plasma processing chamber, the removed component including a material deposited on the surface of the component. A heated oxidizing solution is applied to the material deposited on the component to oxidize a first portion deposited material. A stripping solution is applied to the component to remove the oxidized first portion of the deposited material. An etching solution is applied to remove a second portion of the deposited material and the cleaned component can be rinsed and dried.
摘要:
A method for in-situ dry cleaning of a Ge containing semiconductor surface, other than SiGe. The method is conducted in a vacuum chamber. An oxygen monolayer(s) is formed and promotes removal of essentially all carbon from the surface, and serves to both clean and functionalize the surface. The Ge semiconductor surface is then annealed at a temperature below that which would induce dopant diffusion.
摘要:
A cleaning agent for a silicon wafer (a first cleaning agent) contains at least a water-based cleaning liquid and a water-repellent cleaning liquid for providing at least a recessed portion of an uneven pattern with water repellency during a cleaning process. The water-based cleaning liquid is a liquid in which a water-repellent compound having a reactive moiety chemically bondable to Si element in the silicon wafer and a hydrophobic group, and an organic solvent including at least an alcoholic solvent are mixed and contained. With this cleaning agent, the cleaning process which tends to induce a pattern collapse can be improved.
摘要:
A method for in-situ dry cleaning of a SiGe semiconductor surface doses the SiGe surface with ex-situ wet HF in a clean ambient environment or in-situ dosing with gaseous NH4F to remove oxygen containing contaminants. Dosing the SiGe surface with atomic H removes carbon containing contaminants. Low temperature annealing pulls the surface flat. Passivating the SiGe semiconductor surface with H2O2 vapor for a sufficient time and concentration forms an a oxygen monolayer(s) of —OH sites on the SiGe. Second annealing the SiGe semiconductor surface is conducted at a temperature below that which would induce dopant diffusion. A method for in-situ dry cleaning of a SiGe semiconductor surface, ex-situ degreases the Ge containing semiconductor surface and removes organic contaminants. The surface is then dosed with HF(aq) or NH4F(g) generated via NH3+NH or NF3 with H2 or H2O to remove oxygen containing contaminants. In-situ dosing of the SiGe surface with atomic H removes carbon containing contaminants.
摘要:
A method is provided for cleaning a surface of a semiconductor wafer comprising: (a) contacting the front surface of the wafer with a slurry comprising an abrasive agent and a polymeric rheological modifier; (b) contacting the front surface of the semiconductor wafer with an oxidant; and (c) irradiating the front surface of the semiconductor wafer with ultraviolet light.
摘要:
An object of the present invention is to provided a wafer exhibiting excellent surface properties, in which variation in reaction, which has been concerned in surface treatment with a diffusion controlled process such as conventional wet treatment, is effectively suppressed in a method for surface treatment of a wafer involving a chemical treatment.Provided is a method for surface treatment of a wafer involving a chemical treatment, the chemical treatment including a reaction controlled process, and a diffusion controlled process following the reaction controlled process.
摘要:
Disclosed is a method for cleaning a semiconductor substrate that can solve a problem of a conventional cleaning method which should include at least five steps for cleaning a substrate such as a semiconductor substrate. The method for cleaning a semiconductor substrate comprises a first step of cleaning a substrate with ultrapure water containing ozone, a second step of cleaning the substrate with ultrapure water containing a surfactant, and a third step of removing an organic compound derived from the surfactant, with a cleaning liquid containing ultrapure water and 2-propanol. After the third step, plasma of noble gas such as krypton is applied to the substrate to further remove the organic compound derived from the surfactant.
摘要:
Contaminants from surfaces of temperature sensitive substrates, such as glass substrates are removed by exposing the surfaces to a hydrogen Surface-mixed diffusion flame for a predetermined duration of time. The predetermined duration of time being insufficient to heat up the surfaces substantially thereby causing damage to the temperature sensitive substrates.