Abstract:
The present invention discloses an enhanced secondary electron emitter cathode suitable for use in a typical crossed-field amplifiers. The emitter surfaces of the cathode are formed into protuberances or knurls. The cathode's secondary emission characteristics are enhanced by providing protuberances with more surface area for electrons to bombard and for electrons to be emitted from. The protuberances increase the variety of angles of incidence of bombarding electrons thereby increasing the probability that bombarded electrons can escape the cathode's surfaces.
Abstract:
A grid-controlled electron source comprises an apertured grid spaced in front of a thermionic cathode. Areas of the cathode directly behind the grid conductors are made non-emissive by a bonded surface layer of non-emissive material such as zirconium. On porous metal cathodes impregnated with active emitting material the metal surface may be sealed with a dense layer of inactive metal under the non-emissive layer to prevent chemical reaction of the latter with the emitting material.Methods of depositing the surface layers in the desired pattern include coating the cathode's entire large-scale surface contour, followed by machining small concave dimples into the surface, thereby removing the non-emissive layer from the dimpled surfaces from which small beamlets of electrons are focused between the grid conductors without grid interception.Another method is to mask the desired non-emissive areas with an apertured mask having solid elements registered with the desired positions of the grid conductors. The surface behind the mask apertures is coated with an inactive powder, then the mask is removed and the non-emissive layer or layers deposited in the uncoated, previously masked paths. Lastly, the inactive powder is removed, uncovering the emissive surface areas.
Abstract:
An apparatus and method for producing electrons in a plasma flood gun is disclosed. The apparatus includes an indirectly heated cathode (IHC) which is contained within a pre-fabricated cartridge. This cartridge can be readily replaced in a plasma flood gun. In addition, the use of an IHC reduces the amount of contaminants that are injected into the workpiece or wafer.
Abstract:
In a controllable high-power electron tube in the form of a tetrode, the anode direct voltage is reduced to less than 10 kV with an anode efficiency of greater than 80%. The tube includes coaxially arranged electrodes including a cylindrical indirectly heated full walled matrix cathode containing BaO, a cylindrical control grid, a cylindrical screen grid and an anode, where the spacing between the control grid and the cathode and the spacing between the control grid and the screen grid is less than 1 mm. Such a tube can be used for achieving AM broadcast transmitters which are distinguished by a compact construction, the overall efficiency remaining largely unchanged.
Abstract:
Electronic device comprising an evacuated envelope containing a main thermionic cathode heated solely by energetic electrons emitted from an unheated auxiliary field-emission cathode.
Abstract:
An apparatus and method for producing electrons in a plasma flood gun is disclosed. The apparatus includes an indirectly heated cathode (IHC) which is contained within a pre-fabricated cartridge. This cartridge can be readily replaced in a plasma flood gun. In addition, the use of an IHC reduces the amount of contaminants that are injected into the workpiece or wafer.
Abstract:
For a grid-controlled electron source to operate at extremely high frequencies, as in planar triodes, the control grid must be situated very close to the emissive cathode. Mechanical and thermal distortions have put minimum limits on grid spacings and hence on the maximum operating frequency of grid-controlled tubes. To overcome these limits the grid structure is formed as a network of web members which are part of a laminated sheet having metal layers bonded to opposite surfaces of an insulating layer. One metal layer is affixed to the emissive surface of a metallic matrix cathode and the other metal layer forms the control grid.
Abstract:
AN OXIDE-COATED CATHODE FOR AN ELECTRON TUBE IS PREPARED WITH PARTICLES OF A COMPOSITION CONTAINING AT LEAST ONE ALKALINE EARTH METAL COMPOUND, THE COMPOUND BEING HEAT DECOMPOSABLE TO AN OXIDE. THE PARTICLES ARE COATED WITH METALLIC COBALT, PREFERABLY PRODUCED BY THE DECOMPOSITION OF DICOBALT OCTACARBONYL IN A SOLUTION IN WHICH THE PARTICLES ARE SUSPENDED. SUBSQUENTLY, A LAYER OF THE COATED PARTICLES IS COATED ON A CATHODE SUBSTRATE. THE CATHODE IS THEN ASSEMBLED INTO AN ELECTRON TUBE. DURING THE SUBSEQUENT TUBE FABRICATION, THE LAYER IS HEATED SO AS TH DRIVE OFF THE VOLATILE MATTER THEREIN AND TO CONSOLIDATE THE COATED PARTICLE INTO SINTERED ELECTRON-EMISSIVE COATING ON THE SUBSTRATE.