Abstract:
An electron emitter that consists of: a low work function material including Lanthanum hexaboride or Iridium Cerium that acts as an emitter, a cylinder base made of high work function material that has a cone shape where the low work function material is embedded in the high work function material but is exposed at end of the cone and the combined structure is heated and biased to a negative voltage relative to an anode, an anode electrode that has positive bias relative to the emitter, and a wehnelt electrode with an aperture where the cylindrical base protrudes through the wehnelt aperture so the end of the cone containing the emissive area is placed between the wehnelt and the anode.
Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
According to one embodiment, an X-ray tube includes an anode target, a cathode including a filament and a convergence electrode which includes a groove portion, and an envelope. The groove portion includes a pair of first bottom surfaces which are located in the same plane as the filament and between which the filament is interposed in a width direction of the groove portion, and a pair of second bottom surfaces between which the filament and the pair of first bottom surfaces are interposed in a length direction of the groove portion and which are located closer to an opening of the groove portion than the pair of first bottom surfaces.
Abstract:
In the present invention, a cathode for an x-ray tube is formed with a large area flat emitter. To reduce aberrations to a minimum the emission area in the flat emitter has a non-rectangular shape and focusing pads arranged around the emitter. In an exemplary embodiment, the flat emitter has a non-rectangular polygonal shape for an emission area on the emitter in order to increase the emission current from the emitter at standard voltage levels without the need to run the emitters at a higher temperature, add additional emitters to the cathode and/or to coat the emitters with a low work function material.
Abstract:
An electron beam device for inspecting a sample with an electron beam is described. The electron beam device includes an electron beam source including a thermal field emitter, which includes an emitter tip having an emission facet configured for electron emission, wherein the emission facet has an emission facet width; and a first side facet and a second side facet, wherein an edge facet is formed between the first side facet and the second side facet, which has an edge facet width. The edge facet width is between 20% and 40% of the emission facet width. The electron beam source further includes an extractor device; and a heating device for heating the thermal field emitter. The electron beam device further includes electron beam optics and a detector device for detecting secondary charged particles generated at an impingement or hitting of the primary electron beam on the sample.
Abstract:
According to one embodiment, an X-ray tube includes an anode target, a cathode including a filament and a convergence electrode which includes a groove portion, and an envelope. The groove portion includes a pair of first bottom surfaces which are located in the same plane as the filament and between which the filament is interposed in a width direction of the groove portion, and a pair of second bottom surfaces between which the filament and the pair of first bottom surfaces are interposed in a length direction of the groove portion and which are located closer to an opening of the groove portion than the pair of first bottom surfaces.
Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
In the present invention, a cathode for an x-ray tube is formed with a large area flat emitter. To reduce the aberrations to a minimum the emission area in the flat emitter has a non-rectangular shape and focusing pads arranged around the emitter. In an exemplary embodiment, the flat emitter has a non-rectilinear polygonal shape for an emission area on the emitter in order to increase the emission current from the emitter at standard voltage levels without the need to run the emitters at a higher temperature, add additional emitters to the cathode and/or to coat the emitters with a low work function material.
Abstract:
A first array of spaced wires is in angular contact with a second array of spaced wires so as to from a wire mesh. The first array has a fewer number of wires than the second array.