Abstract:
The circuit breaking system contains a power circuit whose voltage is greater than 600 volts, at least a circuit breaking device, at least a current detection device, a current reduction unit, at least an actuation device, and a linking device. The circuit breaking system is applicable to a high or ultra-high voltage power circuit, and the power circuit is interrupted through purely mechanical means without additional electricity provision. Even when there are major disasters that existing protection means fails, the present invention can still function and provides a trip free, ultimate self-protection mechanism so that a power system can be readily reset.
Abstract:
A motor protector (10) is shown having an elongated generally cup-shaped metallic housing (12) formed by a top wall (12a) and a side wall (12b) extending down from the perimeter of the top walls, the free end of which is welded to a header (14). The side and top wall have a rounded junction (12c) and a calibration rill (12e) is formed in the top wall from one end of the housing and through the rounded junction. An elongated thermostatic disc (16) is mounted in the housing and has a movable electrical contact (20) mounted at one end to be movable into and out of engagement with a stationary electrical contact (34) that is in turn mounted on a heater (26). A ceramic insulator plate (32) is interposed between the heater and the header.
Abstract:
An overcurrent protection circuit for low-voltage, high-current electrical systems comprises a Positive Temperature Coefficient (PTC) resistor in series with an auto-reset thermal breaker. The breaker allows for intermittent current within an assumed product usage duty cycle, and repeatedly trips and resets on sustained high current usage or during a short-circuit fault. The PTC resistor limits current in the system to a low value when the temperature rises to the PTC resistor's trip point. The PTC resistor protects the system from thermal damage during the non-breaker-tripped portions of sustained high current use, or during continuous low-current use. The use of both the PTC resistor and auto-reset breaker provides thermal overcurrent protection while allowing for performance claims based on an assumed duty cycle of product use.
Abstract:
An overcurrent protection circuit for low-voltage, high-current electrical systems comprises a Positive Temperature Coefficient (PTC) resistor in series with an auto-reset thermal breaker. The breaker allows for intermittent current within an assumed product usage duty cycle, and repeatedly trips and resets on sustained high current usage or during a short-circuit fault. The PTC resistor limits current in the system to a low value when the temperature rises to the PTC resistor's trip point. The PTC resistor protects the system from thermal damage during the non-breaker-tripped portions of sustained high current use, or during continuous low-current use. The use of both the PTC resistor and auto-reset breaker provides thermal overcurrent protection while allowing for performance claims based on an assumed duty cycle of product use.
Abstract:
A bimetallic strip for a circuit breaker includes a substantially rectangular frame with two long sides, two short sides, a top side, and a bottom side. The long sides are slightly bent upwards. The first short side is securely mounted on the first terminal of the circuit breaker and has a length smaller than that of the second short side. A first saddle-like slot is defined at the first short side. A movable node mounted at the second short side and the bottom side. By means of changing the depth of the saddle-like slot, it is very easy for a manufacturer to make the metallic strips with various specifications of current ratings.
Abstract:
Disclosed is an overload protector with a hermetically sealed structure, the overload protector comprising a housing that has an outer peripheral flange and an external connecting terminal and that accommodates a bimetal element having a movable contact and a fixed contact; a conducting plate that is installed to an upper portion of the housing and that has an external connecting terminal and a contact connected to the movable contact of the bimetal element; and an insulating gasket disposed between the housing and the conducting plate, grooves or ribs being formed on the entire flange, and ribs or grooves being formed on a portion of the conducting plate corresponding to the grooves or ribs formed on the flange in such a way that the ribs or grooves of the conducting plate are engaged with the groves or ribs of the flange.
Abstract:
In a sealed casing (2) there are provided a bimetal disc (8) which carries out the switching of an electric current path by snapping between oppositely dished configurations in conformity with the level of the electric current that flows therethrough and ambient temperature by moving a movable contact (10) into and out of the electric current path. A fuse terminal (14, 15, 141, 142, 143, 144) is connected in series with the bimetal disc (8) and shuts off the current path by being melted by an over-current. The fuse terminal (14) in one embodiment is fixed on one surface of a support member (3) that serves as a heater. The fuse terminal (14) and the bimetal disc (8) are connected through a connective pin (12) which is provided through the support member (3) electrically insulated therefrom. In another embodiment the bimetal disc (8) and the fuse terminal (15) are disposed on opposite face surfaces of support member (3).
Abstract:
A switch is described, having a housing 12 which receives a temperature-dependent switching mechanism 11 and which has a first housing part 15 on whose inner base 25 a first electrode 24 connected to a first external terminal 23 is arranged, as well as a second housing part 14, closing off the first housing part 15, that comprises a second electrode 20 connected to a second external terminal 22. The switching mechanism 11 creates, as a function of its temperature, an electrically conducting connection between the first and the second electrode 24, 20. A series resistor 34 is arranged in the housing 12, geometrically and electrically between the switching mechanism 11 and one of the two electrodes 20, 24.
Abstract:
A resettable, current-responsive, circuit interrupter device has two wide but thin terminals embedded up to a substantial part of their thickness in a side wall of an insulating housing so that sides of the embedded terminal portions are exposed from the housing material along the side wall inside the housing. Terminal ends extend from the bottom of the housing to be connected in a circuit and extend through the top of the housing to be accessible for test purposes. An electrical contact is mounted on the exposed side surface of one embedded terminal portion and a thermostatic strip element is secured to the exposed side surface of the other embedded terminal portion to extend closely along the one housing side to normally engage the contact in a very compact, closed circuit position of the device. A lid overlies the thermostatic strip element. The thermostatic strip element has a selected resistivity and the wide terminals have substantial current capacity so the thermostatic strip self-heats to a selected temperature to open the circuit in response to occurrence of a precisely predetermined overload current condition in the device circuit at any ambient temperature likely to be encountered in an automotive environment.
Abstract:
A light responsive control and overload protection circuit for low voltage illumination systems includes means responsive to ambient light for providing an enabling output. Control means respond to the enabling output for switching heating current on when enabled. Heat-producing means is provided. The heating current passes through the heat-producing means whenever the control means is enabled. Heat-responsive circuit breaker means are in circuit between a low voltage power source and the load. The heat-producing means is thermally coupled to the heat-responsive circuit breaker means to transfer heat thereto and effect and maintain an opening thereof whenever sufficient ambient light is present. Heat-responsive means respond to heat from the heat-producing means to prevent the overheating thereof during overloads and load circuit short circuiting.