Abstract:
A dielectric ceramic composition includes a main component comprising (1-x)BaTiO3-x(Na1-yKy)NbO3, where 0.005≦x≦0.5 and 0.3≦y≦1.0; a first subcomponent comprising an element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu and Zn; and a second subcomponent comprising SiO2.
Abstract:
A semiconductor ceramic composition including a compound represented by the following general formula (1) as a main component. (BavBixAyREw)m(TiuTMz)O3 (1) (wherein, A represents both elements of Na and K; RE is at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy and Er; and TM is at least one element selected from the group consisting of V, Nb and Ta.) 0.01≦x≦0.15 (2) x≦y≦0.3 (3) 0≦(w+z)≦0.01 (4) v+x+y+w=1 (5) u+z=1 (6) 0.950≦m≦1.050 (7) further, 0.001 mol to 0.055 mol of Ca is included and the ratio of Na/(Na+K) is 0.1 or more and less than 1.
Abstract:
A thermistor material and a method for preparing a thermistor material are provided. The thermistor material is prepared by mixing and heating a mixture containing BaTiO3, B2O3, SiO2, Li2O, P2O5, Cs2O, Nd2O3, Al2O3 and TiO2.
Abstract:
A ceramic material has the following composition: (Ba1-xMnx)O.z(Ti1-yMmy)O2.Dd.Ee. In this composition, (Ba1-xMnx)=A and (Ti1-yMmy)=B, where Mn stands for at least one element selected from: Mg, Ca, Sr, Pb and mixtures thereof; Mm stands for at least one element selected from: Sn, Zr and mixtures thereof; D stands for at least one element having donor properties; E stands for at least one element having acceptor properties. The following applies for the parameters: 0≦x≦0.6; 0≦y≦0.35; 0≦d≦0.02; 0≦e≦0.02; 1
Abstract:
There is provided a dielectric composition, including; a base powder including BamTiO3 (0.995≦m≦1.010); a first sub-component including 0.05 to 4.00 moles of an oxide or carbonate containing at least one rare-earth element based on 100 moles of the base powder; a second sub-component including 0.05 to 0.70 moles of an oxide or carbonate containing at least one transition metal; a third sub-component including 0.20 to 2.00 moles of a Si oxide; a fourth sub-component including 0.02 to 1.00 mole of an Al oxide; and a fifth sub-component including 20 to 140% of an oxide containing at least one of Ba and Ca, based on the third sub-component.
Abstract:
A semiconductor ceramic composition which includes a compound represented by the following formula (1) as a main component, (Ba1-x-y-wBixAyREw)m(Ti1-zTMz)O3 (1) (wherein, A is at least one element selected from Na or K, RE is at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy and Er, TM is at least one element selected from the group consisting of V, Nb and Ta, w, x, y, z and m satisfy the following relationships of (2)˜(5), 0.007≦x≦0.125 (2), x
Abstract:
Provided is a method for producing a lead-free, perovskite semiconductor ceramic composition which is capable of suppressing the temperature coefficient of resistance α from becoming small, and obtaining stable characteristics. The method for producing a lead-free semiconductor ceramic composition in which a portion of Ba in a BaTiO3-based oxide is substituted by Bi and A (in which A is at least one kind of Na, Li and K), the method including: calcining a raw material for forming the semiconductor ceramic composition at 700° C. to 1,300° C.; adding an oxide containing Ba and Ti, which becomes a liquid phase at 1,300° C. to 1,450° C., to the calcined raw material; forming the same; and then sintering at a temperature of 1,300° C. to 1,450° C.
Abstract:
An object is to provide a PTC element that can be made thinner, using a Pb-free semiconductor ceramic composition.The object is achieved with a PTC element including at least two metal electrodes and a BaTiO3 system semiconductor ceramic composition arranged between the electrodes, in which, in the semiconductor ceramic composition, a portion of Ba in the BaTiO3 system is substituted by Bi—Na and a semiconductorizing element, vacancies are formed on Bi sites by depleting at least a portion of Bi, and oxygen defects are formed on a crystal thereof. Since the PTCR characteristic at the inside of the semiconductor ceramic composition is negligibly weak in comparison with the PTCR characteristic at the interface between the semiconductor ceramic composition and the electrodes, the PTC element can be made thinner.
Abstract:
There are provided a dielectric composition, a method of fabricating the same, and a multilayer ceeramic electronic component using the same. The dielectric composition includes a perovskite powder particle having a surface on which a doping layer is formed, the doping layer being doped with at least one material selected from a group consisting of alkaline earth elements and boron group elements, and rare earth elements.When a perovskite powder particle is synthesized by using a hydrothermal synthesis method, a doping layer doped with at least one material selected from the group consisting of alkaline earth elements and boron group elements and rare earth elements is formed on a surface of the perovskite powder particle, such that a dielectric composition having excellent reliability, dielectric properties, and electric properties can be fabricated.
Abstract:
A semiconductor ceramic and a positive-coefficient characteristic thermistor are provided which have a stable PTC characteristic, a high double point, and a wide operating temperature range. The semiconductor ceramic contains, as a main component, a barium titanate-based composition having a perovskite structure expressed by a general formula AmBO3. Out of 100 mol % of the Ti, an amount in a range of 0.05 mol % or more to 0.3 mol % or less of Ti is replaced with W as a semiconductor forming agent, the ratio m of A sites mainly to B sites is 0.99≦m≦1.002, and an actually-measured sintered density is 70% or more and 90% or less of the theoretical sintered density. In the positive-coefficient characteristic thermistor, a component body is formed of the semiconductor ceramic.