Abstract:
An example method for controlling a carriage of a printing device is described. In one implementation, a target velocity value that satisfies a sharpness threshold is filtered by a processor resource of the printing device, a feed forward term is generated using a continuous model applied to the filtered velocity input using a plurality of electromechanical parameters, a feedback term is generated based on a difference between an expected pulse-width modulation (PWM) profile and an actual PWM profile, and a voltage to be provided to a motor of the carriage is adjusted based on the feed forward term and the feedback term.
Abstract:
A closed-loop control device to control a system to be controlled includes a front node, back node, external tapping point, controller and compensating circuit. The compensating circuit has an inner node, frequency filter, front buffer and back buffer. The front node determines a difference; the back node supplies an external sum signal. A setting device automatically suppresses use of the output signal of the front buffer, supplies the back buffer and the back node with a first excitation signal as the compensation signal and detects a first result signal produced by the first excitation signal. The first result signal is one of the control difference, internal sum signal, output filtered signal of the frequency filter or output signal of the front buffer. The setting device evaluates the first excitation signal and the first result signal, sets a parameter of the frequency filter and the second propagation delay.
Abstract:
An apparatus includes a driven member, a DC brushless motor, a first signal generation unit configured to output a first signal according to rotation of the DC brushless motor and to change an output value of the first signal each time the DC brushless motor rotates by a predetermined amount, a movement unit configured to move the driven member by a driving force of the DC brushless motor, a second signal generation unit configured to output a second signal each time the driven member moves by the predetermined amount, and a control unit configured to control driving of the DC brushless motor based on the output value of the first signal and a value of a number of times that the second signal is output during a period in which the DC brushless motor rotates by a predetermined amount.
Abstract:
A multi-drive printed product processing device is provided that includes a processing component and a motor driving the processing component. A motor control controls the motor. An encoder measures a position of the motor and sends an encoder feedback signal indicating the position. The motor control receives the encoder feedback signal. An encoder feedback signal verification circuit verifies the integrity of the feedback signal.
Abstract:
Respective coordinators are spawned or activated to coordinate activities with regard to respective tasks. Where the respective tasks require cooperative efforts of a plurality of controllers, the respective coordinators ensure cooperative efforts by generating and communicating cooperative commands to the plurality of controllers. The coordinators may act as clearinghouses for system data, selectively requesting and relaying system information to appropriate controllers. For example, a document processing system activates respective coordinators for respective sheets of print media. The respective coordinators orchestrate the transportation of the sheets by sequentially orchestrating the activities of sequentially selected pluralities of transportation actuator controllers. Selected sheet position information from sensors and/or from models maintained by the actuator controllers may be relayed by the coordinators to selected actuator controllers as appropriate to the sheet transportation tasks.
Abstract:
An improved electronic line shaft provides for a predictor sending predicted position and/or velocity values to servant drives that may be later strobed in by high speed low-latency strobe signals to eliminate network jitter and delay. The predictor may be implemented as a phase lock loop, providing filtering of a master encoder signal together with flexible electronic gear ratio adjustments and other desired control refinements.
Abstract:
Disclosed herein is An information processing apparatus, including: a control unit for receiving operation requests from a plurality of users, for acquiring user information regarding the users who perform the operation requests, for permitting an operation input from one user among the plurality of users who perform the operation requests, and for inhibiting the operation inputs from the other users; and a notification unit for outputting notification information for notifying the other users inhibited from the operation inputs, of the user information regarding the one user who is permitted to perform the operation input.
Abstract:
An electronic line shaft includes a motor drive and a processing unit operable to execute a wizard for configuring the motor drive. The wizard is operable to receive mechanical characteristic data associated with the motor drive, determine a noise parameter based on the mechanical characteristic data, and determine at least one control parameter of the motor drive based on the noise parameter.
Abstract:
A system for reducing torque disturbance includes a motor mechanically coupled to an endless belt. The motor is operable to drive the belt, and the belt has a seam that causes a torque disturbance to the system. The system includes a data structure having a set of values that indicates an amount of compensation for reducing the torque disturbance and a controller electrically coupled with the motor. The controller is configured to control the motor and reduce the torque disturbance based on the set of values in the data structure.
Abstract:
When torque of a DC motor is dropped down to zero at a stop position, force is generated by deformation of a member for transmitting the torque of the DC motor. The force moves the driven body which is in the stopped state, which results in a shift of the driven body from the stop position. Therefore, a process for stopping the driven body is performed according to the amount of shift by an encoder which periodically outputs a pulse signal according to movement of the driven body, a unit for acquiring velocity information and position information of the driven body based on the pulse signal, a controlling unit for controlling a moving unit based on the velocity information and the position information, and a unit for calculating the amount of shift, which is caused by the force generated by the deformation of the member for transmitting the torque, at the stop position of the driven body.