摘要:
A distributed electromagnetic method synchronization system and method involving a satellite communication and navigation system. The method includes the following steps: the transmitter and the receiver establish connection with the satellite respectively to realize the position and time synchronization; the transmitter and the receiver acquire the second-pulse-signal, and according to the second-pulse-signal to adjust their own temperature compensation crystal, so that the frequency reaches the preset value; in the field of operation, the transmitter and receiver through the satellite mutual communication, timely adjustment of the operation process. In the above-mentioned way, the communication function can be set in one place to facilitate the timely adjustment of the data acquisition process so as to ensure the quality of the collected data and improve the efficiency of the field operation.
摘要:
An electronic device is provided. The electronic device may include a display, a processor operatively connected with the display and configured to generate external reference time information, a display driver integrated circuit configured to periodically or randomly receive the external reference time information from the processor, wherein the display driver integrated circuit is configured to generate internal time information based on an internal clock, to output a clock image corresponding to the internal time information on the display, and if a time error between the external reference time information and the internal time information occurs during the outputting of the clock image, to output the internal time information, the time error of which is corrected, on the display.
摘要:
A method and apparatus for determining a drift between a local clock of a movable device and a reference clock that is used by one or more reference devices. The local clock may be calibrated at a calibration location and then the movable device may be moved to an operating location that is different from the calibration location. The drift is determined by observing one or more signals transmitted by the respective one or more reference devices, when the device is at the calibration location and when it is at the operating location. These observations are used together with a model of the signals to determine the drift.
摘要:
When a frequency measurement unit measures the frequency of a temperature-sensing oscillation test signal and the frequency of a driving-pulse signal transmitted from an electronic apparatus via an coil electromagnetically coupled with a motor coil, a temperature-compensation data generation unit creates temperature-compensation data based on the frequency of the temperature-sensing oscillation test signal and the frequency of the driving-pulse signal. This temperature-compensation data is transmitted to an analog electronic timepiece via the coil. That is, a state of the analog electronic timepiece is measured in a non-contact manner and the temperature-compensation data obtained based on the measurement result is transmitted, whereby the analog electronic timepiece is adjusted in a state of being incorporated in an external casing.
摘要:
The invention concerns a timekeeper equipped with a radio reception device capable of decoding a Radio Data System (RDS) information (7) and comprising a time base (1), means (5) for displaying time data supplied by said time base, and means (2) for correcting said time data. The radio reception device (7) comprises means (10) for delivering RDS type data derived from a RDS spectrum received on a high-frequency carrier; and control means (4, 6, 19) which, on the basis of the delivered RDS type data control the correcting means (2) to ensure time setting of the timekeeper. The invention is characterised in that the timekeeper is designed to be portable and the radio reception device (7) further includes means (10) for rejecting the spectrum received from a frequency modulated transmitter supplying RDS data, except for the frequency band in which are contained RDS type data.
摘要:
A data transmitting/receiving system is configured so as to send data to an analog-type watch, without the need to make direct electrical contact thereto and without influencing the drive of the hands of the watch. When a timing signal that is sent from the watch is received, a data transmitting unit performs transmission. The watch does not receive data at other times, and this receiving operation is performed intermittently.
摘要:
A data transmission/reception system for wrist-type electronic timepiece. The data transmission/reception system for electronic timepieces comprises a data transmission device for generating data signals, and an electronic timepiece that receives data signals from the data transmission device by utilizing a coil for driving the hands, wherein the electronic timepiece is provided with a timing signal-generating means which generates a timing signal, and the data transmission device is provided with a timing signal-receiving means which receives the timing signals output from said hand-driving coil and transmits data signals in synchronism with the timing signals that are received. The data are transmitted and received in an ordinary hand-moving state without halting the timepiece while the functions are being operated. Therefore, there is no need of adjusting the time after the operation of the functions.
摘要:
A data transmission/reception system for wrist-type electronic timepiece. The data transmission/reception system for electronic timepieces comprises a data transmission device for generating data signals, and an electronic timepiece that receives data signals from the data transmission device by utilizing a coil for driving the hands, wherein the electronic timepiece is provided with a timing signal-generating means which generates a timing signal, and the data transmission device is provided with a timing signal-receiving means which receives the timing signals output from said hand-driving coil and transmits data signals in synchronism with the timing signals that are received. The data are transmitted and received in an ordinary hand-moving state without halting the timepiece while the functions are being operated. Therefore, there is no need of adjusting the time after the operation of the functions.
摘要:
A time synchronization system comprises a GPS (Global Positioning System) receiver for receiving a time signal from a Global Positioning System (GPS), and outputting a UTC (Universal Time Coordinated) synchronization reference signal synchronizing with UTC and a UTC synchronization absolute time signal, and a time signal distributor for generating a reference time signal synchronizing with UTC from the synchronization reference signal and the absolute time signal, and transmits this reference time signal in distribution to a plurality of distributed control oriented terminal devices. The time synchronization between the plurality of distributed control oriented terminal devices can be thereby taken.
摘要:
A GPS-based frequency/time source of the present invention provides an accurate, traceable low cost reference. In particular, the GPS-based frequency/time source includes a GPS receiver, a variable frequency oscillator and a micro processor. The GPS receiver receives and produces as output signals GPS information, whereas the variable frequency oscillator has a frequency control input terminal and produces an output frequency signal, and is coupled to the GPS receiver. The micro processor is coupled to receive the output signals produced by the GPS receiver and produces an error signal indicative of a difference in frequency between GPS synchronized frequency and the output frequency signal of the variable frequency oscillator. Circuitry is responsive to the error signal to produce an electronic frequency control signal, which is applied to the frequency control input of the variable frequency oscillator so as to cause the difference in frequency to be reduced. In this manner, a low cost oscillator may be employed in such a way as to produce a very accurate output frequency signal.