Abstract:
A device includes a substrate is substantially transparent and includes a contact surface and an interface surface. The interface surface includes a plurality of electrical contacts. The device further includes a semiconductor die, which includes a plurality of connections, a first photo detector and a second photo detector. Each of the plurality of connections includes a connection bump formed thereon to couple to the plurality of electrical contacts of the interface surface of the substrate. The plurality of connections positioned relative to the first and second photo detectors to alter a directional response of at least one photo detector of the plurality of photo detectors.
Abstract:
An optical sensor includes at least two optical sensing pixels and at least two different grating elements. These grating elements are disposed above these optical sensing pixels correspondingly.
Abstract:
An atmospheric correction system (ACS) is proposed, which accounts for the errors resulting from the in-homogeneities in the operational atmosphere along the slant path by constructing atmospheric profiles from the data along the actual target to sensor slant-range path. The ACS generates a slant-range path based on the arbitrary geometry that models the sensor to target relationship. This path takes the atmosphere and obstructions between the two endpoints into account when determining the atmospheric profile. The ACS uses assimilation to incorporate weather data from multiple sources and constructs an atmospheric profile from the best available data. The ACS allows the user to take advantage of variable weather and information along the path that can lead to increased accuracy in the derived atmospheric compensation value.
Abstract:
An imaging sensor system, adaptably mountable to a vehicle having a view of a target area comprising: a rigid mount unit having at least two imaging sensors disposed within the mount unit, wherein a first imaging and a second imaging sensor each has a focal axis passing through an aperture in the mount unit, wherein the first imaging sensor generates a first image area comprising a first data array of pixels and the second imaging sensor generates a second image area comprising a second data array of pixels, wherein the first and second imaging sensors are offset to have a first image overlap area in the target area, wherein the first sensors image data bisects the second sensors image data in the first image overlap area.
Abstract:
A fixed-source array test station provides a cost-effective high-throughput test bed for testing optical sensors that require stimulus at fixed angular positions. A SAL seeker requires stimulus at fixed angular position across its FOV to calibrate its spatial transfer function (STF). An array of fixed collimated sources at different angular positions is aligned so that their beams overlap the entrance pupil of the sensor under test. Each source may comprise an inexpensive light emitting diode (LED) or vertical cavity surface emitting laser (VCSEL) and collimator. To simplify alignment the sources may be positioned on and perpendicular to the surface of a sphere with the seeker's entrance pupil located at the center of the sphere. The sources are activated in accordance with an activation profile in order to calibrate or otherwise test the sensor.
Abstract:
In an exemplary embodiment, an apparatus includes a sensor integrated circuit (IC). The at least one integrated photodetector that is adapted to sense light, and an integrated analog-to-digital converter (ADC). The integrated analog-to-digital converter (ADC) is coupled to the at least one integrated photodetector, and is adapted to convert an output signal of one or more of the at least one integrated photodetector to one or more digital signals. The sensor integrated circuit (IC) further includes an integrated controller that is adapted to facilitate operation of the sensor integrated circuit (IC).
Abstract:
Techniques are disclosed relating to analog-to-digital converters in integrated circuits. In one embodiment, a second-order delta-sigma analog-to-digital converter (ADC) is disclosed. The ADC includes a second-order integrator adapted to second-order integrate a value at a first node, where the first node is coupled to an input of the ADC. The ADC also includes a comparator coupled to an output of the second-order integrator. The ADC further includes a digital-to-analog converter (DAC) coupled between an output of the comparator and the first node. The DAC is adapted to receive a digital output of the comparator and to generate a first charge or a second charge. The DAC includes a first charge pump adapted to produce the first charge and a second charge pump adapted to produce the second charge. The first and second charges are asymmetric.
Abstract:
An apparatus includes a housing having a front surface, a rear surface, and at least one sidewall therebetween and a plurality of optical windows formed in the housing to allow light to pass through from multiple directions. The apparatus further includes a plurality of photo detectors to generate electrical signals based on received light, where each of the plurality of photo detectors is disposed within a respective one of the plurality of optical windows. The apparatus also includes a control circuit coupled to the plurality of photo detectors to receive the electrical signals, determine light variations from the electrical signals, and determine a change in position of an object based on variation ratios of the light variations received by at least one pair of photo detectors within the plurality of photo detectors in response to determining the light variations.
Abstract:
The present invention provides for simple and streamlined boresight correlation of FLIR-to-missile video. Boresight correlation is performed with un-NUCed missile video, which allows boresight correlation and NUC to be performed simultaneously thereby reducing the time required to acquire a target and fire the missile. The current approach uses the motion of the missile seeker for NUCing to produce spatial gradient filtering in the missile image by differencing images as the seeker moves. This compensates DC non-uniformities in the image. A FLIR image is processed with a matching displace and subtract spatial filter constructed based on the tracked scene motion. The FLIR image is resampled to match the missile image resolution, and the two images are preprocessed and correlated using conventional methods. Improved NUC is provided by cross-referencing multiple measurements of each area of the scene as viewed by different pixels in the imager. This approach is based on the simple yet novel premise that every pixel in the array that looks at the same thing should see the same thing. As a result, the NUC terms adapt to non-uniformities in the imager and not the scene.
Abstract:
To calibrate a tracking system, a computing device receives positional data of a tracked object from an optical sensor as the object is pointed approximately toward the optical sensor. The computing device computes a first angle of the object with respect to an optical axis of the optical sensor using the received positional data. The computing device receives inertial data corresponding to the object, wherein a second angle of the object with respect to a plane normal to gravity can be computed from the inertial data. The computing device determines a pitch of the optical sensor using the first angle and the second angle.