Abstract:
Systems for managing hair condition information and methods for optimizing a cosmetic counseling system are provided. In an embodiment, the system comprises: a sensor for determining an item of hair condition information for a user, a memory configured to store the item of hair condition information, and a processor configured to update at least one item of hair condition information in the memory based on a discrepancy between an item of hair condition information for a user determined by using the sensor after a hair treatment and a predicted item of hair condition information for the user.
Abstract:
A method for identifying carpet materials includes receiving, by a controller coupled to an NIR spectrometer, a predetermined number of NIR measurements of a sample of the carpet material conducted over a bandwidth of a subset of a full NIR spectrum. The NIR spectrometer performs the NIR measurements under control of the controller. Also, sending the NTR measurements to a remote identification server including a spectra library of known carpet materials. The method also includes receiving a matching result from the remote identification server, sending the matching result to a remote appraisal server, and receiving an appraised value of the carpet material.
Abstract:
There is provided a quantitative method for determining a level of a sanding surface preparation of a carbon fiber composite surface, prior to the carbon fiber composite surface undergoing a post-processing operation. The quantitative method includes fabricating a ladder panel of levels of sanding correlating to an amount of sanding of sanding surface preparation standards for a reference carbon fiber composite surface of reference carbon fiber composite structure(s); using surface analysis tools to create target values for quantifying the levels of sanding; measuring, with the surface analysis tools, sanding surface preparation location(s) on the carbon fiber composite surface of a test carbon fiber composite structure, to obtain test result measurement(s); comparing the test result measurement(s) to the levels, to obtain test result level(s); determining if the test result level(s) meet the target values; and determining whether the carbon fiber composite surface is acceptable to proceed with the post-processing operation.
Abstract:
The purpose of the present invention is to provide a fiber-reinforced resin material having minimal directionality of strength as well as excellent productivity, a method and device for manufacturing a fiber-reinforced resin material whereby a molded article is obtained, and a device for inspecting a fiber bundle group. A method for manufacturing a sheet-shaped fiber-reinforced resin material in which a paste (P1) is impregnated between cut fiber bundles (CF), the method for manufacturing a fiber-reinforced resin material including a coating step applying a coating of a paste (P1) on a first sheet (S11) conveyed in a predetermined direction, a cutting step for cutting a long fiber bundle (CF) using a cutter (113A), a scattering step for dispersing the cut fiber bundles (CF) and scattering the cut fiber bundles (CF) on the paste (P1), and an impregnation step for pressing a fiber bundle group (F1) and the paste (P1) on the first sheet (S11) and impregnating the paste (P1) between the fiber bundles (CF).
Abstract:
A rear-projection photodetection yarn clearing apparatus includes a light emitting diode and a detector arranged behind a to-be-detected yarn, and further includes a reflector arranged in front of the to-be-detected yarn. A front end face of the light emitting diode is flush with a photosurface of the detector, a light filter for capturing light rays having a waveband from 330 nm to 470 nm is also arranged in front of the light emitting diode and the detector, and a light-reflecting surface of the reflector is in parallel with the photosurface of the detector. The light emitting diode includes an ultraviolet light emitting diode, and the detector includes an ultraviolet enhanced silicon photodiode. The ultraviolet enhanced silicon photodiode is made from a high-resistivity N-type (111) silicon wafer having a resistivity of 3,000 Ω·cm and a field oxide thickness of 1,000 nm.
Abstract:
A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.
Abstract:
An apparatus for determining fiber orientation parameters of a sheet of material during a production process includes a polarized radiation generating system operable for providing polarized radiation having a frequency of at least 1×108 Hz. The radiation is aligned to be incident on a sheet material to be characterized. A polarimeter is aligned to receive the radiation transmitted by the sheet material. A photodetector is provided for measuring radiation received after polarization processing by the polarimeter. A processor is coupled to the photodetector for calculating Stokes parameters of the sheet material based upon intensities of the radiation received and determines at least one parameter relating to fiber orientation of the sheet material based upon the Stokes parameters.
Abstract:
Methods and apparatus to measure visual appearance of randomly arranged birefringent fibers are disclosed. One method comprises emitting light, creating Ni polarization states of the emitted light, illuminating the birefringent fibers with the emitted light so polarized, thereby generating IRi internal reflection components, ERi external reflection components, and Di diffusion components of the light in the birefringent fibers, observing the light from the illuminated birefringent fibers, creating Oi polarization states of the observed light, forming Xi images of the observed polarized light, each image comprising an information (Ni, Oi, IRi, ERi, Di), wherein i=1, 2, . . . n and n≧4, measuring the intensity Ii in each pixel in the X, images, and separating the i-th internal reflection component, the i-th external reflection component, and the i-th diffusion component from the i-th image for the Xi images.
Abstract:
The present invention is a method of determining the presence of keratin, particularly hard keratin, such as exists in mammalian hair and feathers, and objects comprising such materials. The method of the present invention also includes displaying information derived from such a determination, as well as a measurement method followed by transmission of data to a remote processing site for analysis or display. The invention also includes devices for carrying out the determination, display and/or transmission.
Abstract:
An apparatus (200) for determining fiber orientation parameters of a sheet of material during a production process includes a polarized radiation generating system (201, 202) operable for providing polarized radiation having a frequency of at least 1×108 Hz. The radiation is aligned to be incident on a sheet of material to be characterized (203). A polarimeter (204, 205) is aligned to receive the radiation transmitted by the sheet of material (203). A photodetector (206) is provided for measuring radiation received after polarization processing by the polarimeter. A processor (207) is coupled to the photodetector (206) for calculating Stokes parameters of the moving sheet (203) based upon intensities of the radiation received and determines at least one parameter relating to fiber orientation of the moving sheet based upon the Stokes parameters.