Abstract:
A collimation evaluation device includes a first reflection member, a second reflection member, a screen, and a housing. A first reflection surface of the first reflection member and a first reflection surface of the second reflection member face each other and are parallel to each other. Further, interference fringes are formed on the screen by light L12 reflected on the first reflection surface of the first reflection member and a second reflection surface of the second reflection member and light L21 reflected on a second reflection surface of the first reflection member and the first reflection surface of the second reflection member, and collimation of incident light is evaluated on the basis of a direction of the interference fringes.
Abstract:
This disclosure provides an imprint apparatus configured to form a pattern with an imprint material by bringing the imprint material on a substrate and a pattern of the mold into contact with each other including a drive unit to bring part of the pattern of the mold into contact with the imprint material, and bring the pattern into contact with the imprint material so a contact surface area between the pattern of the mold and the imprint material increases, an interference fringe detecting unit to detect an interference fringe generated by reflected light from the pattern of the mold and reflected light from the substrate, and a state detecting unit to detect a contact state between the pattern of the mold and the imprint material on the basis of the interference fringe.
Abstract:
The measurement accuracy of an apparatus for measuring the surface shape of an object utilizing a two-wavelength phase-shift interferometry is improved. A low-coherence light source, a plurality of wavelength filters with different transmission wavelengths, an angle control unit and an analysis unit are provided. When performing a two-wavelength phase shift method, the analysis unit detects the wavelength difference between two wavelengths, and corrects a calculated wavelength value and a calculated phase value of one of the wavelengths for preventing a fringe-order calculation error. Next, the angle of the wavelength filters is controlled for making the actual wavelength difference coincident with a designed value. Thus, the wavelength difference between the two wavelengths is continuously controlled to be constant, which enables measurements of surface shapes with high accuracy, even when there are wavelength fluctuations due to the temperature change or the time elapse.
Abstract:
An optical image measuring apparatus capable of effectively obtaining a direct current component of a heterodyne signal which is composed of background light of interference light is provided. The optical image measuring apparatus includes: an optical interference system in which a light beam from a light source is divided into signal light and reference light by a beam splitter, a frequency of the reference light is shifted by a frequency shifter, and the signal light propagating through an object to be measured and the reference light reflected on a mirror are superimposed on each other by the beam splitter to produce interference light; beam splitters for dividing the interference light into interference light beams; shutters serving as an intensity modulating unit for modulating intensities of the respective interference light beams at predetermined intervals; CCDs for receiving the respective interference light beams whose intensities are modulated and outputting electrical signals; and a signal processing portion serving as a calculating unit for calculating an intensity of the direct current component corresponding to the background light of the interference light based on the outputted electrical signals.
Abstract:
A heterodyne phase-determining interferometer comprising a Smartt point diffraction interferometer (PDI) 10 in which the pinhole plate 22 is replaced by a half-wave, partially transmitting plate 22' with a pinhole 20 therein. The output beams 26 and 24 from the pinhole 20 are propagated through a frequency shifter 12 which includes a quarter-wave plate 28 whose axis is at 45.degree. to the polarization axes of the two beams 26 and 24 coming from the PDI 10, a half-wave plate 30 rotating at an angular frequency of .omega., and a linear polarizer which orients the polarization vectors of the two beams in the same direction along the propagation axis. The output of the frequency shifter 12 is a moving interference pattern consisting of alternate light and dark lines. This pattern is projected upon a phase-measuring means 14 comprising an array of photodetectors 34, 36 connected to a plurality of phase-to-voltage converters 38. There is one reference photodetector 34, the rest being test photodetectors. The reference photodetector 34 is connected to all phase-to-voltage converters 38, but each test photodetector 36 is connected to a different phase-to-voltage converter 38. The output of each converter 38 is the phase difference between the light at the point viewed by its associated test photodetector 36 and the light at the point viewed by the reference photodetector 34.
Abstract:
Various uses of visible light interference patterns are provided. Suitable interference patterns are those formed by diffraction from patterns of apertures. Typical uses disclosed herein relate to spatial metrology, such as a translational and/or angular position determination system. Further uses include the analysis of properties of the light itself (such as the determination of the wavelength of the electromagnetic radiation). Still further uses include the analysis of one or more properties (e.g. refractive index) of the matter through which the light passes. Part of the interference pattern is captured at a pixellated detector, such as a CCD chip, and the captured pattern compared with a calculated pattern. Very precise measurements of the spacing between maxima is possible, thus allowing very precise measurements of position of the detector in the interference pattern.
Abstract:
An optical measuring apparatus for comprising, in combination, a polarization type interferometer including a polarization type beam splitter in which a polarized beam of light is split into orthogonally polarized reference and test beams, an array of detectors arranged in a line for creating a plurality of phase shifting interferograms, and a scanning device for moving the object in a direction perpendicular to a long axis of the detectors.
Abstract:
Optical communications can be performed using spectral interferometry. An incident transmission pulse or beam may be mixed with a locally generated beam or pulse to create an interference pattern that may be analyzed to extract the transmitted data. The incident transmission pulse or beam may also be split and mixed with itself to create an interference pattern.
Abstract:
A laser system includes a laser diode that oscillates in a multi-mode and has characteristics in which its oscillation wavelength varies with temperature, a grating that receives a light beam emitted from the laser diode and returns a diffracted beam to the laser diode, a mechanism that changes the wavelength of the diffracted beam returned to the laser diode, a wavelength detector that detects the wavelength of an output beam which is the same as that of the diffracted beam returned to the laser diode, a temperature regulator that maintains the laser diode at a predetermined temperature, and a control unit that controls the mechanism so that the output beam having a predetermined wavelength is output and controls the temperature regulator so that the laser diode oscillates at the predetermined wavelength.
Abstract:
A method and system for controlling the wavelength of light emitted by a tunable laser. The system includes a wavelength tuner that provides information of a desired wavelength; a coupler for tapping a portion of the light from the tunable laser; and an apparatus for measuring the actual wavelength of the light. The apparatus takes the portion of the light as an input signal and splits the input signal into two beams that are directed through two paths of different optical lengths. Then, the two beams are interfered with each other in order to form a fringe pattern at an observation plane, where the fringe pattern is detected and analyzed to determine the wavelength of the light. A processor compares the difference between the desired and determined wavelengths, and sends a tuning signal to the tunable laser forming a feedback control of the tunable laser.