Abstract:
Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.
Abstract:
In one embodiment, a safety trailer has semi-tractor hitches at both ends and a safety wall that is fixed to one side of the trailer. That side, however, can be changed to the right or left side of the road, depending on the end to which the truck attaches. A caboose can be attached at the end of the trailer opposite the tractor to provide additional lighting and impact protection. Optionally, the trailer can be equipped with overhead protection, lighting, ventilation, onboard hydraulics, compressors, generators and other equipment, as well as related fuel, water, storage and restroom facilities and other amenities.
Abstract:
The invention relates to a method of, with a projectile (1) comprising a reactive charge (4), combating an explosive-charged weapon unit (7), preferably an enemy shell, so that undesirable harmful effects on the environment are reduced, wherein the projectile (1) is configured to penetrate the surface (8) of the weapon unit (7) upon impact so that a passage (9) is opened into the explosive (10) of the weapon unit (7), through which passage (9) the reactive charge (4), under the influence of the kinetic energy of the projectile (1), is transferred to the explosive (10) of the weapon unit (7). The method can be deemed to be characterized in that the reactive charge (4), upon contact with the explosive (10) of the weapon unit (7), reacts and starts a hypergolic reaction with the explosive (10). The invention also relates to a projectile (1) for the said method.
Abstract:
A set for dismantling a target includes a disruptor having a firing axis and a device for aligning and positioning the disruptor in a deactivation direction relative to the target. A firing sub-set includes a movable mounting having a movable carriage mounted thereon to which the disruptor is fastened and provided with components for adjustment translation and orientation relative to the mounting. A mirror is oriented rearward of the disruptor and fastened to the disruptor perpendicular to the firing axis and having a centering mark centered on that axis. A pointing sub-set includes a laser mounted thereto and adapted to emit beams along an aiming line coaxial with the deactivation direction. The pointing sub-set is behind the firing sub-set relative to a target such that the mirror intercepts the laser aiming line at its centering mark and the disrupter firing axis is coaxial with the laser aiming line.
Abstract:
Systems (100) and methods (1200) for recoil absorption. The methods comprising: causing a moving carrier (102) to freely travel linearly in a first direction by discharging at least one recoil producing device (110-114); absorbing an impulse force resulting from discharging the recoil producing device using a spring (122, 124) having a first end coupled to the moving carrier and a second end (130) coupled to a fixed frame member (132); and applying a pulling force by the spring to the moving carrier in a second direction opposed from the first direction at an end of spring travel, whereby a uni-directional force transfer mechanism (610) is caused to engage an elongate latching element so as to latch the moving carrier in position and prevent the moving carrier from freely traveling in the second direction.
Abstract:
An armor includes a core that, in turn, includes a first layer of prismatic elements arranged in a tessellated fashion and a second layer of prismatic elements arranged in a tessellated fashion. The first layer of prismatic elements is nested into the second layer of prismatic elements. An armor includes a strike face sheet, a rear face sheet, and a core disposed between the strike face sheet and the rear face sheet. The core includes a first layer of prismatic elements arranged in a tessellated fashion, a second layer of prismatic elements arranged in a tessellated fashion, and a strain isolation layer. The first layer of prismatic elements is nested into the second layer of prismatic elements with the strain isolation layer disposed between the first layer of prismatic elements and the second layer of prismatic elements. The armor is at least one of curved in at least one direction, configured to include a corner, and configured to include a prismatic element of the first layer of prismatic elements or the second layer of prismatic element having a metallic layer disposed thereon.
Abstract:
A set for and method of positioning and aligning a disruptor for the deactivation of a target and including a firing axis, a firing direction in terms of position and orientation relative to the target. The method including disposing a laser, adapted to emit beams along an aiming line, at a distance from the target such that the aiming line of the laser is coaxial with the firing direction. The disruptor is interposed between the laser and the target and positioned and oriented to make the firing axis thereof coaxial with the aiming line, by means of a flat mirror mounted at the rear of the disruptor and disposed perpendicularly to the axis of the disruptor. The mirror reflects a beam to the laser that is coaxial with the aiming line and emitted by the laser onto a mark on the mirror and centered on the firing axis.
Abstract:
An apparatus for detecting objects on or beneath a surface of a medium having a reach-in arm, the base of the reach in arm connected to a platform, and the distal end of the reach-in arm connected to a sensor. The sensor detects objects on or beneath the surface of a medium and is capable of monitoring the distance of the sensor from objects in the path of the sensor. Motor controllers are connected to the reach-in arm and the sensor for controlling the movements of the reach-in arm and sensor. A computer is in communication with the reach-in arm, the sensor, and the motor controllers. The computer detects objects on or beneath the surface of a medium; determines the location of the reach-in arm and sensor relative to objects in their paths; and controls the movement of the reach-in arm and sensor either automatically using pre-programmed software or according to user inputted commands.
Abstract:
A mine defeating projectile includes a housing defining an inner cavity, a plurality of channels extending through a front surface of the housing and to the inner cavity, and a plurality of cutout sections extending through as side wall thereof. The projectile further includes a fragmentation sleeve disposed in the inner cavity of the housing and a slider sleeve disposed in the inner cavity of the housing abutting an aft end of the fragmentation sleeve. The slider sleeve includes an explosive train and the slider sleeve is frangibly attached to the housing. The projectile further includes a finned section attached to an aft end of the housing. The finned section defines a protrusion for initiating the explosive train. The protrusion is spaced apart from the explosive train.
Abstract:
A device to test the good working order of a magnetic field generator, and namely a demining coil, such device comprising at least one evaluation means for the magnetic field coupled with at least one display means, device wherein said evaluation means comprise at least one wound coil able to be positioned so that the lines of the magnetic field pass through it, said wound coil linked to evaluation electronics powered by said wound coil itself.